

rewalt

	(archaic) to overturn, throw down

	a library for rewriting, algebra, and topology, developed in Tallinn (aka Reval)

[image: _images/readme_1.png]
rewalt is a toolkit for higher-dimensional diagram rewriting, with applications in

	higher and monoidal category theory,

	homotopical algebra,

	combinatorial topology,

and more. Thanks to its visualisation features, it can also be used as a structure-aware string diagram editor, supporting TikZ [https://tikz.net/] output so the string diagrams can be directly embedded in your LaTeX files.

[image: _images/readme_2.png]
It implements diagrammatic sets [https://arxiv.org/abs/2007.14505] which, by the “higher-dimensional rewriting” paradigm, double as a model of

	higher-dimensional rewrite systems, and of

	directed cell complexes.

This model is “topologically sound”: a diagrammatic set built in rewalt presents a finite CW complex, and a diagram constructed in the diagrammatic set presents a valid homotopy in this CW complex.

A diagrammatic set can be seen as a generalisation of a simplicial set or of a cubical set with many more “cell shapes”. As a result, rewalt also contains a full implementation of finitely presented simplicial sets and cubical sets with connections.

Installation

rewalt is available for Python 3.7 and higher. You can install it with the command

pip install rewalt

If you want the bleeding edge, you can check out the GitHub repository [https://github.com/ahadziha/rewalt].

Getting started

To get started, we recommend you check the Notebooks, which contain a number of worked examples from category theory, algebra, and homotopy theory.

Further reading

For a first introduction to the ideas of higher-dimensional rewriting, diagrammatic sets, and “topological soundness”, you may want to watch these presentations at the CIRM meeting on Higher Structures [https://cirmbox.cirm-math.fr/s/8a8DXyFA4bzaSNF] and at the GETCO 2022 conference [https://youtu.be/UlVZPiJ87kw].

A nice overview of the general landscape of higher-dimensional rewriting is Yves Guiraud’s mémoire d’habilitation [https://webusers.imj-prg.fr/~yves.guiraud/articles/hdr.pdf].

So far there are two papers on the theory of diagrammatic sets: the first one [https://arxiv.org/abs/2007.14505] containing the foundations, the second one [https://arxiv.org/abs/2101.10361] containing some developments applied to categorical universal algebra.

A description and complexity analysis of some of the data structures and algorithms behind rewalt will be published in the proceedings of ACT 2022 [https://msp.cis.strath.ac.uk/act2022/].

License

rewalt is distributed under the BSD 3-clause license.

Contributing

Currently, the only active developer of rewalt is Amar Hadzihasanovic [https://ioc.ee/~amar].

Contributions are welcome. Please reach out either by sending me an email, or by opening an issue [https://github.com/ahadziha/rewalt/issues/new].

Notebooks

	The theory of monoids
	Adding the sorts and operations

	Adding “oriented equations”

	Making the equations go both ways

	Computing with diagrammatic rewrites

	Generating string diagrams
	A presentation of adjunctions

	Customising string diagrams

	Fun with higher-dimensional shapes

	Exploring simplices and cubes
	Oriented simplices

	Maps of simplices

	Constructing a simplicial set

	Oriented cubes

	Maps of cubes

	Constructing a cubical set

	Mixing them together

	The Eckmann–Hilton argument
	First braiding

	Second braiding

	Presenting a category
	Adding all objects and morphisms

	Adding compositors

	Composites involving units

API

	diagrams
	diagrams.DiagSet

	diagrams.Diagram

	diagrams.SimplexDiagram

	diagrams.CubeDiagram

	diagrams.PointDiagram

	shapes
	shapes.Shape

	shapes.ShapeMap

	shapes.Simplex

	shapes.Cube

	ogposets
	ogposets.OgPoset

	ogposets.OgMap

	ogposets.El

	ogposets.GrSet

	ogposets.GrSubset

	ogposets.Closed

	ogposets.OgMapPair

	strdiags
	strdiags.StrDiag

	strdiags.draw

	strdiags.draw_boundaries

	strdiags.to_gif

	hasse
	hasse.Hasse

	hasse.draw

	drawing
	drawing.DrawBackend

	drawing.MatBackend

	drawing.TikZBackend

Indices and tables

	Index

	Module Index

	Search Page

The theory of monoids

In this notebook, we will construct a presentation of the theory of monoids or associative algebras in rewalt. Depending on your favourite gadget, you may see this as the data presenting a monoidal category (PRO) or an operad.

Adding the sorts and operations

Let’s first import rewalt and create an empty diagrammatic set — an object of class DiagSet — that we will call Mon.

[1]:

import rewalt

Mon = rewalt.DiagSet()

You know how a monoidal category can be seen as a one-object bicategory (its delooping [https://ncatlab.org/nlab/show/delooping#deloopings_of_higher_categorical_structures])? This is how we do it in rewalt too: the sorts of a monoidal theory are 1-cells going to and from a single 0-cell.

So first of all, we add a single 0-dimensional generator to our diagrammatic set.

[2]:

pt = Mon.add('pt')

This adds a 0-dimensional generator to Mon, assigns it the name 'pt' and returns the Diagram object that “picks” that generator only; we assign this diagram to the variable pt.

Next, we add a single 1-dimensional generator, corresponding to the single sort of our theory.

[3]:

a = Mon.add('a', pt, pt)

The two extra arguments that we gave to add specify the input, or source boundary of the new generator, and the output, or target boundary of the new generator, respectively. In this case they are both equal to the unique “point”.

By the way, if you fail to assign the output of add to a variable, you can always retrieve it later by giving the generator’s name to Mon’s indexer.

[4]:

assert a == Mon['a']

There is not much that we can do with 0-cells… but with 1-cells, we can create larger diagrams by pasting.

The paste method pastes together diagrams along the k-dimensional output boundary of one and the k-dimensional input boundary of the other, when these match each other.

For a 1-cell, the only non-trivial boundary is the 0-dimensional one; pasting along it corresponds to “concatenation of paths”. We can concatenate a to itself as many times as we want. Let’s also visualise the result as a “1-dimensional string diagram”.

[5]:

a.draw()

[image: ../_images/notebooks_monoids_9_0.png]

[6]:

a.paste(a).draw()

[image: ../_images/notebooks_monoids_10_0.png]

[7]:

a.paste(a).paste(a).draw()

[image: ../_images/notebooks_monoids_11_0.png]

And so on. Note that paste can also take an integer argument specifying the dimension of the boundary along which to paste; it defaults to the minimum of the two diagrams’ dimensions, minus 1. In this case the minimum of 1 and 1 is 1, which minus 1 equals 0, and that’s the boundary we want.

Now that we have the sorts, let’s add the operations. The monoid multiplication takes two inputs and returns one output. This corresponds to a 2-dimensional generator, whose input is a.paste(a), and output a.

[8]:

m = Mon.add('m', a.paste(a), a)

And let’s picture this as a string diagram.

[9]:

m.draw()

[image: ../_images/notebooks_monoids_15_0.png]

(As you can see, string diagrams by default go from bottom to top. If you prefer left-to-right, or top-to-bottom, or right-to-left orientation, you can pass it as an argument to draw; or to change the default setting, reassign rewalt.strdiags.DEFAULT['orientation'].)

[10]:

m.draw(orientation='lr')

[image: ../_images/notebooks_monoids_17_0.png]

Since we have a single sort, it is a little pointless to label the wires. Same for labelling the unique point. Let’s switch labels off for these generators.

[11]:

Mon.update('a', draw_label=False)
Mon.update('pt', draw_label=False)
m.draw()

[image: ../_images/notebooks_monoids_19_0.png]

Next, we want to add the monoid unit, which is a “nullary” operation. Here things get a little more subtle.

Cells in rewalt are not allowed to have “strictly lower-dimensional” inputs or outputs: if we try to add a 2-dimensional generator whose input is a 0-dimensional diagram, we will get an error.

[12]:

try:
 u = Mon.add('u', pt, a)
except ValueError:
 print('Nope')

Nope

Instead, we have to use “weak units”, in the form of degenerate diagrams. (This may seem like a hassle in dimension 2, where “everything can be strictified”, but pays off in higher dimensions.)

A simple constructor for degenerate diagrams is the unit method, which creates a “unit diagram”, one dimension higher.

[13]:

assert pt.dim == 0
assert not pt.isdegenerate

assert pt.unit().dim == 1
assert pt.unit().isdegenerate

So to add the monoid unit, we make pt.unit() its input.

In string diagrams, degenerate cells are represented as translucent wires (when wires), or as “node-less nodes” (when nodes).

[14]:

u = Mon.add('u', pt.unit(), a)
u.draw()

[image: ../_images/notebooks_monoids_25_0.png]

Adding “oriented equations”

Now we can compose diagrams with paste in two directions, along the 0-boundary (“horizontally”) or the 1-boundary (“vertically”)…

[15]:

u.paste(m, 0).draw() # "horizontal" pasting

[image: ../_images/notebooks_monoids_27_0.png]

[16]:

u.paste(m, 0).paste(m).draw() # ...and now "vertical" pasting

[image: ../_images/notebooks_monoids_28_0.png]

A useful alternative to paste (especially in an “operadic” setting) are the methods to_inputs and to_outputs, which allow us to paste a diagram only to some inputs and outputs of another diagram.

To use these in practice, one must know that every node and wire in a string diagram have a unique position. We can use the keyword arguments positions (both nodes and wires), nodepositions, and wirepositions to enable positions in string diagram output.

[17]:

m.draw(positions=True)

[image: ../_images/notebooks_monoids_30_0.png]

Now, we can paste another multiplication either to the input in position 0, or the input in position 1.

[18]:

m.to_inputs(0, m).draw()

[image: ../_images/notebooks_monoids_32_0.png]

[19]:

m.to_inputs(1, m).draw()

[image: ../_images/notebooks_monoids_33_0.png]

These two diagrams happen to be the two sides of the associativity equation, so let’s add this equation to our presentation!

Or rather, we add an oriented associativity equation, or associativity rewrite, or “associator”, as a 3-dimensional generator. All the cells in diagrammatic sets have a direction.

[20]:

assoc = Mon.add('assoc', m.to_inputs(0, m), m.to_inputs(1, m))
assoc.draw()

[image: ../_images/notebooks_monoids_35_0.png]

You can see that, when we draw a 3-dimensional diagram, we obtain a “2-dimensional slice” string diagram, where nodes correspond to 3-cells and wires to 2-cells. (In general, for an n-dimensional diagram, nodes are n-dimensional cells and wires are (n-1)-dimensional cells).

Here, assoc is a 3-dimensional cell that has two m 2-cells in its input, and two m 2-cells in its output.

To see the two “sides” of the rewrite, we can either use the draw_boundaries method, or first call input/output and only then draw.

[21]:

assoc.draw_boundaries()

[image: ../_images/notebooks_monoids_37_0.png]

[image: ../_images/notebooks_monoids_37_1.png]

Next, let’s add left unitality and right unitality equations/rewrites. The left-hand side of the left unitality equation is this.

[22]:

m.to_inputs(0, u).draw()

[image: ../_images/notebooks_monoids_39_0.png]

This diagram is supposed to be equal to “the identity operation” on our sort (which would be the unit on a)… but not quite, because it contains a weak unit in the input; instead we want to equate to another degenerate cell called the left unitor on a. We build it like this.

[23]:

a.lunitor('-').draw()

[image: ../_images/notebooks_monoids_41_0.png]

The argument '-' specifies that the unit should appear in the input, and not the output.

Now we can add the “left unitality” generator.

[24]:

lunit = Mon.add('lunit', m.to_inputs(0, u), a.lunitor('-'))
lunit.draw()

[image: ../_images/notebooks_monoids_43_0.png]

We proceed similarly for the “right unitality” generator.

[25]:

runit = Mon.add('runit', m.to_inputs(1, u), a.runitor('-'))
runit.draw()
runit.draw_boundaries()

[image: ../_images/notebooks_monoids_45_0.png]

[image: ../_images/notebooks_monoids_45_1.png]

[image: ../_images/notebooks_monoids_45_2.png]

Making the equations go both ways

That’s it, we now have a presentation of the theory of monoids!

Except our “equations” are really directed rewrites. What if we want to use them in both directions? Luckily, we have methods for “weakly inverting” a generator. Let’s try it on assoc.

[26]:

Mon.invert('assoc')

[26]:

(<rewalt.diagrams.Diagram at 0x7f72f7faf100>,
 <rewalt.diagrams.Diagram at 0x7f72f7faeb60>,
 <rewalt.diagrams.Diagram at 0x7f72f843f250>)

This returned 3 diagrams, which corresponds to the fact that 3 new generators were added. Let’s see what happened. We can see a list of the generators, ordered by dimension, with the DiagSet method by_dim.

[27]:

Mon.by_dim

[27]:

{0: {'pt'},
 1: {'a'},
 2: {'m', 'u'},
 3: {'assoc', 'assoc⁻¹', 'lunit', 'runit'},
 4: {'inv(assoc, assoc⁻¹)', 'inv(assoc⁻¹, assoc)'}}

So, first of all, there’s a new 3-dimensional generator, assoc⁻¹.

[28]:

Mon['assoc⁻¹'].draw()
Mon['assoc⁻¹'].draw_boundaries()

[image: ../_images/notebooks_monoids_51_0.png]

[image: ../_images/notebooks_monoids_51_1.png]

[image: ../_images/notebooks_monoids_51_2.png]

This is the “weak inverse” of assoc: a generator with the same boundaries as assoc, but going in the reverse direction. If a generator has a weak inverse, we can get it with the inverse attribute.

[29]:

assert assoc.inverse == Mon['assoc⁻¹']

Then, we have two new 4-dimensional generators, inv(assoc, assoc⁻¹) and inv(assoc⁻¹, assoc).

[30]:

Mon['inv(assoc, assoc⁻¹)'].draw()
Mon['inv(assoc, assoc⁻¹)'].draw_boundaries()

[image: ../_images/notebooks_monoids_55_0.png]

[image: ../_images/notebooks_monoids_55_1.png]

[image: ../_images/notebooks_monoids_55_2.png]

This generator “exhibits” the fact that assoc⁻¹ is a right inverse (right in diagrammatic order; left in composition order) for assoc: it goes from the pasting of assoc and assoc⁻¹, to a weak unit on the input of assoc.

We call this a right invertor for assoc, and can get it with the rinvertor attribute.

Similarly, inv(assoc, assoc⁻¹) exhibits the fact that assoc⁻¹ is a left inverse for assoc. We call this a left invertor for assoc, and can retrieve it with the linvertor attribute.

Note that the left invertor for assoc is the right invertor for assoc⁻¹, and vice versa!

[31]:

assert assoc.rinvertor == Mon['inv(assoc, assoc⁻¹)']
assert assoc.linvertor == assoc.inverse.rinvertor

In the theory of diagrammatic sets [https://arxiv.org/abs/2007.14505], these two “witnesses” should, themselves, be weakly invertible cells; since this would require an infinite number of generators, we leave it to the user to invert them when/if needed.

[32]:

Mon['inv(assoc⁻¹, assoc)'].draw()
Mon['inv(assoc⁻¹, assoc)'].draw_boundaries()

[image: ../_images/notebooks_monoids_59_0.png]

[image: ../_images/notebooks_monoids_59_1.png]

[image: ../_images/notebooks_monoids_59_2.png]

Computing with diagrammatic rewrites

Let’s start using our presentation to make some diagrammatic computations. First, we create a 2-dimensional diagram.

[33]:

start = m.to_inputs(0, m).to_inputs(0, m)
start.draw(nodepositions=True)

[image: ../_images/notebooks_monoids_61_0.png]

In traditional algebraic notation, this would correspond to the term \(m(m(m(x, y), z), w)\).

We see that we can apply an associativity rewrite/equation in two places, corresponding to the nodes in positions (0, 1) and to the nodes in positions (1, 2).

We can “apply rewrites” with the rewrite method. The result of rewrite is not going to be the “rewritten” 2-dimensional diagram. Instead, it will be a 3-dimensional diagram whose input is the original diagram, and output is the rewritten diagram: an “embodiment” of the rewrite operation.

(The rewrite method is, in fact, a special instance of to_outputs; once you understand the principles of higher-dimensional rewriting, you should be able to see why).

[34]:

rew1 = start.rewrite([0,1], assoc)
rew1.draw()
rew1.output.draw(nodepositions=True)

[image: ../_images/notebooks_monoids_63_0.png]

[image: ../_images/notebooks_monoids_63_1.png]

In the rewritten diagram, we can only apply assoc to the nodes (0, 2).

[35]:

rew2 = rew1.output.rewrite([0, 2], assoc)
rew2.output.draw(nodepositions=True)

[image: ../_images/notebooks_monoids_65_0.png]

Now, we can apply assoc to the nodes (1, 2).

[36]:

rew3 = rew2.output.rewrite([1, 2], assoc)
rew3.output.draw()

[image: ../_images/notebooks_monoids_67_0.png]

We cannot apply assoc anywhere else. (Of course we could start applying assoc⁻¹).

Let’s put together our sequence of rewrites.

[37]:

seq1 = rewalt.Diagram.with_layers(rew1, rew2, rew3)
seq1.draw()

[image: ../_images/notebooks_monoids_69_0.png]

(We could have equally defined seq1 as rew1.paste(rew2).paste(rew3)).

We can use the method rewrite_steps to get all our rewrite steps… and we can even produce a little gif animation with all the steps. (We’ll make it loop backwards as well so it doesn’t end too soon.)

[38]:

rewalt.strdiags.to_gif(*seq1.rewrite_steps, loop=True, path='monoids_1.gif')

[image: AssocSequence1]

Let’s go back to the start and pick a different rewrite, the one on nodes (1, 2).

[39]:

rew4 = start.rewrite([1, 2], assoc)
rew4.output.draw(nodepositions=True)

[image: ../_images/notebooks_monoids_74_0.png]

[40]:

rew5 = rew4.output.rewrite([0, 2], assoc)
rew5.output.draw()

[image: ../_images/notebooks_monoids_75_0.png]

[41]:

seq2 = rew4.paste(rew5)
seq2.draw()
rewalt.strdiags.to_gif(*seq2.rewrite_steps, loop=True, path='monoids_2.gif')

[image: ../_images/notebooks_monoids_76_0.png]

[image: AssocSequence2]

You can see that seq1 and seq2 are two different sequences of rewrites with the same starting and ending point.

If you are familiar with the characterisation of monoidal categories as pseudomonoids in the monoidal 2-category of categories with cartesian product, you may recognise the two sides of Mac Lane’s pentagon equation!

Indeed, we can add a 4-dimensional generator between the two, embodying Mac Lane’s pentagon.

[42]:

pentagon = Mon.add('pentagon', seq1, seq2)
pentagon.draw()
pentagon.draw_boundaries()

[image: ../_images/notebooks_monoids_79_0.png]

[image: ../_images/notebooks_monoids_79_1.png]

[image: ../_images/notebooks_monoids_79_2.png]

We could go on and add generators corresponding to Mac Lane’s triangle… but this was supposed to be about the theory of monoids, not of lax or pseudomonoids, so let’s stop here instead.

Generating string diagrams

For any higher-dimensional diagram that we can create in rewalt, we can output a string diagram representation both as an image (with the Matplotlib backend), or as TikZ code that we can include in our LaTeX files.

Thus, one of the intended applications of rewalt is also to be a structure-aware, type-aware string diagram generator: we can build our string diagrams the way we build the morphisms/homotopies/operations/rewrites that they represent, and let rewalt do the typesetting for us.

In this notebook, we will work out one example, and explore the customisation options that we have.

Note that the placement and general style of nodes and wires is not currently customisable (except for the choice of orientation). However, rewalt is open source software and everyone is welcome to modify the algorithm to suit their aesthetic preferences.

A presentation of adjunctions

As an example, we will construct a presentation of the “theory of adjunctions”, or “walking adjunction”, whose models in a bicategory are adjunctions internal to that bicategory. (This has “dualities in monoidal categories” as a special case.) The triangle/zigzag/snake equations of adjunctions are some of the most well-known and recognisable in string diagrams.

The theory of adjunctions has two 0-cells and two 1-cells between them, going in opposite directions.

[1]:

import rewalt

Adj = rewalt.DiagSet()
x = Adj.add('x')
y = Adj.add('y')
l = Adj.add('l', x, y)
r = Adj.add('r', y, x)

Then, we need to add two 2-cells, the unit and counit of the adjunction.

[2]:

eta = Adj.add('η', x.unit(), l.paste(r)) # unit
eps = Adj.add('ε', r.paste(l), y.unit()) # counit

This is how rewalt draws the unit and counit by default.

[3]:

eta.draw()
eps.draw()

[image: ../_images/notebooks_stringdiagrams_6_0.png]

[image: ../_images/notebooks_stringdiagrams_6_1.png]

We can use the picture as a visual aid to see how to paste the unit and counit together to get the left-hand side of the triangle equations. For example, if we add an l to the right of eta…

[4]:

eta.paste(l).draw(wirepositions=True)

[image: ../_images/notebooks_stringdiagrams_8_0.png]

… we can plug an eps to the wires in positions (3, 1).

[5]:

lhs1 = eta.paste(l).to_outputs([3, 1], eps)
lhs1.draw()

[image: ../_images/notebooks_stringdiagrams_10_0.png]

This needs to be equated to “the identity on l”, except we have weak units on x in the input and on y in the output.

We can in fact obtain the degenerate 2-cell with the right type as one of the cubical degeneracies on l.

[6]:

rhs1 = l.cube_degeneracy(1)
rhs1.draw()

[image: ../_images/notebooks_stringdiagrams_12_0.png]

We can now add our first “oriented equation”.

[7]:

eq1 = Adj.add('eq1', lhs1, rhs1)
eq1.draw()

[image: ../_images/notebooks_stringdiagrams_14_0.png]

For the second one, we can proceed symmetrically. We add an r to the left of eta…

[8]:

r.paste(eta).draw(wirepositions=True)

[image: ../_images/notebooks_stringdiagrams_16_0.png]

… and we plug an eps to the wires in positions (0, 2) to get the left-hand side of the second equation.

[9]:

lhs2 = r.paste(eta).to_outputs([0, 2], eps)
lhs2.draw()

[image: ../_images/notebooks_stringdiagrams_18_0.png]

To get the right-hand-side, we use a different cubical degeneracy on r.

[10]:

rhs2 = r.cube_degeneracy(0)
rhs2.draw()

[image: ../_images/notebooks_stringdiagrams_20_0.png]

And finally, we add the second triangle equation.

[11]:

eq2 = Adj.add('eq2', lhs2, rhs2)
eq2.draw()

[image: ../_images/notebooks_stringdiagrams_22_0.png]

That’s it, we have a presentation. (We could also invert eq1 and eq2 but that’s besides the point of this exercise).

Customising string diagrams

Let’s return to the first triangle equation. The default string diagram representation of its left-hand side is this.

[12]:

eq1.input.draw()

[image: ../_images/notebooks_stringdiagrams_25_0.png]

Let’s make it a bit nicer.

First of all, it is quite common to draw units and counits as “bent wires” (aka “cups and caps”), without a node, so that the triangle equations look like topological trivialities.

We can do this by disabling node drawing for these generators of Adj.

[13]:

Adj.update('ε', draw_node=False)
Adj.update('η', draw_node=False)
eq1.input.draw()

[image: ../_images/notebooks_stringdiagrams_27_0.png]

Then, since we have only two 1-cells, why not also colour-code them?

[14]:

Adj.update('l', color='blue')
Adj.update('r', color='magenta')
eq1.input.draw()

[image: ../_images/notebooks_stringdiagrams_29_0.png]

When we are working in rewalt, it is good to see the weak units, because we need to take them into account to know that everything typechecks.

However, we may want to “hide them away” if, for example, our diagrams are to be interpreted in a strict 2-category. We can do this by changing the alpha factor for degenerate wires to 0.

[15]:

eq1.input.draw(degenalpha=0)

[image: ../_images/notebooks_stringdiagrams_31_0.png]

Note that this still shows the weak unit labels, which is actually helpful in this setting because it reminds us of the type of l and r. If we wanted to get rid of them, we could deactivate labels for these generators.

[16]:

Adj.update('x', draw_label=False)
Adj.update('y', draw_label=False)
eq1.input.draw(degenalpha=0)

[image: ../_images/notebooks_stringdiagrams_33_0.png]

[17]:

Adj.update('x', draw_label=True)
Adj.update('y', draw_label=True)

There are different factions on what the “correct” orientation of string diagrams is. In rewalt, the default is bottom-to-top, but it can be changed.

[18]:

eq1.input.draw(degenalpha=0, orientation='lr')
eq1.input.draw(degenalpha=0, orientation='rl')
eq1.input.draw(degenalpha=0, orientation='tb')

[image: ../_images/notebooks_stringdiagrams_36_0.png]

[image: ../_images/notebooks_stringdiagrams_36_1.png]

[image: ../_images/notebooks_stringdiagrams_36_2.png]

We can change the default settings by reassigning the values of rewalt.strdiags.DEFAULT. Let’s say we want all our string diagrams to be top-to-bottom with no degenerate wires.

[19]:

rewalt.strdiags.DEFAULT['orientation'] = 'tb'
rewalt.strdiags.DEFAULT['degenalpha'] = 0

Now, how about a dark theme?

[20]:

Adj.update('l', color='cyan')
eq1.input.draw(bgcolor='0.2', fgcolor='white')

[image: ../_images/notebooks_stringdiagrams_40_0.png]

Let’s see what the sides of our two triangle equations look like now.

[21]:

eq1.draw_boundaries(bgcolor='0.2', fgcolor='white')
eq2.draw_boundaries(bgcolor='0.2', fgcolor='white')

[image: ../_images/notebooks_stringdiagrams_42_0.png]

[image: ../_images/notebooks_stringdiagrams_42_1.png]

[image: ../_images/notebooks_stringdiagrams_42_2.png]

[image: ../_images/notebooks_stringdiagrams_42_3.png]

If we are happy with the look, we can output TikZ code. Note that both labels and colour settings are passed to the TikZ output as they are, so we should change the background colour setting to something that LaTeX can recognise.

TikZ output uses coordinates in \([0, 1] \times [0, 1]\). Since this is quite small, the output is scaled 3x by default; this can be changed with the scale, xscale, and yscale keyword arguments.

Also, by default, all wires are drawn with a contour, which is useful in higher dimensions when wires can overlap. Since we are in 2d and this doesn’t happen, we can avoid drawing contours by setting the depth keyword argument to False.

[22]:

eq1.input.draw(
 bgcolor='darkgray', fgcolor='white', depth=False,
 tikz=True, xscale=8, yscale=6, path='stringdiagrams_1.tex')

Here’s the generated TikZ code and the output PDF compiled with pdflatex.

Fun with higher-dimensional shapes

We can have string diagram representations not only of “diagrams in a DiagSet”, but also of shapes and maps of shapes of diagrams.

For example, this is the shape of the diagram we have been using as example.

[23]:

eq1.input.shape.draw()

[image: ../_images/notebooks_stringdiagrams_47_0.png]

Every wire and node corresponds to a unique face of the diagram shape, specified by its dimension (2 for nodes, 1 for wires) and position. We can match them to elements of the oriented face poset of the diagram shape.

[24]:

eq1.input.shape.hasse(labels=False)

[image: ../_images/notebooks_stringdiagrams_49_0.png]

A quick way to get some interesting higher-dimensional diagrams, and see some of the things that happen with string diagram representations in higher dimensions, is to use some of the constructors for special higher-dimensional shapes, such as simplices and cubes.

For example, these are the string diagrams for the 3-dimensional boundaries of the oriented 4-cube.

[25]:

tesseract = rewalt.Shape.cube(4)
tesseract.draw_boundaries(labels=False)

[image: ../_images/notebooks_stringdiagrams_51_0.png]

[image: ../_images/notebooks_stringdiagrams_51_1.png]

You can see that wires can cross each other in 3-dimensional diagrams.

For something even more complicated, let’s look at a cubical connection map on the 4-cube, which is a surjective map from the 5-cube.

(Since this will contain many degenerate cells, we will reinstate weak units in string diagrams.)

[26]:

connection = tesseract.cube_connection(1, '-')
connection.draw_boundaries(labels=False, degenalpha=0.1)

[image: ../_images/notebooks_stringdiagrams_53_0.png]

[image: ../_images/notebooks_stringdiagrams_53_1.png]

And let’s play a little bit with colours.

[27]:

connection.draw_boundaries(
 labels=False, bgcolor='0.2', fgcolor='0.9', degenalpha=0.4,
 nodecolor='gold', nodestroke='white')

[image: ../_images/notebooks_stringdiagrams_55_0.png]

[image: ../_images/notebooks_stringdiagrams_55_1.png]

Looks nice, no?

Exploring simplices and cubes

Diagrammatic sets — the structure implemented by rewalt’s DiagSet class — support a wide variety of “shapes of diagrams”, while remaining “topologically sound”. This makes them a convenient tool for diagrammatic reasoning in higher category, higher algebra, and homotopy theory.

Among these shapes are some subclasses that are widely used on their own: in particular, the simplices and the cubes. Indeed, both simplicial sets [https://ncatlab.org/nlab/show/simplicial+set] and cubical sets with connections [https://ncatlab.org/nlab/show/connection+on+a+cubical+set] are special instances of diagrammatic sets (their categories are full subcategories of the category of diagrammatic sets).

Reflecting this, rewalt contains a full implementation of (finitely presented) simplicial sets and of (finitely presented) cubical sets with connections. These are nothing more than diagrammatic sets whose generators all have simplicial and cubical shapes! The Diagram objects that have simplicial or cubical shapes come with special methods for constructing simplicial and cubical faces, degeneracies, and connections.

Since all our shapes have a “globular” orientation (half a boundary is “input”, half a boundary is “output”), our simplices are in fact Street’s oriented simplices [https://ncatlab.org/nlab/show/oriental]. Similarly our cubes are “oriented” as in cubical ω-categories [https://arxiv.org/abs/math/0007009].

Understanding higher-dimensional oriented simplices and cubes can be difficult. In this notebook, we will try to use rewalt and its visualisation methods to get a grip on some low-but-not-too-low-dimensional examples.

Oriented simplices

Oriented simplices of any dimension are built with the Shapes.simplex constructor. Let’s start with the lowest possible dimension: -1.

[1]:

import rewalt

empty = rewalt.Shape.simplex(-1)

This is just the empty diagram shape.

[2]:

len(empty)

[2]:

0

The 0-dimensional simplex is a point.

[3]:

point = rewalt.Shape.simplex(0)
point.draw()

[image: ../_images/notebooks_simplicescubes_6_0.png]

The 1-dimensional oriented simplex is an arrow.

[4]:

arrow = rewalt.Shape.simplex(1)
arrow.draw()

[image: ../_images/notebooks_simplicescubes_8_0.png]

Things get a little more interesting in dimension 2. The oriented 2-simplex is a triangle with two output sides and one input side. In string diagrams, it is, for example, the shape of a comonoid comultiplication.

[5]:

triangle = rewalt.Shape.simplex(2)
triangle.draw()

[image: ../_images/notebooks_simplicescubes_10_0.png]

Let’s go one dimension higher. The oriented 3-simplex is a tetrahedron with two output faces and two input faces, each of them shaped as an oriented 2-simplex.

Let’s draw both its top-dimensional “slice” string diagram, and its input and output boundaries.

[6]:

tetrahedron = rewalt.Shape.simplex(3)
tetrahedron.draw()

[image: ../_images/notebooks_simplicescubes_12_0.png]

[7]:

tetrahedron.draw_boundaries()

[image: ../_images/notebooks_simplicescubes_13_0.png]

[image: ../_images/notebooks_simplicescubes_13_1.png]

If we stick to the interpretation of the oriented 2-simplex as “the shape of a comultiplication”, then the oriented 3-simplex is “the shape of a (co)associativity equation”, or “the shape of a coassociator”!

What happens if we go to dimension 4?

[8]:

pentachoron = rewalt.Shape.simplex(4)
pentachoron.draw()

[image: ../_images/notebooks_simplicescubes_15_0.png]

This is a pentachoron, also known as the 5-cell [https://en.wikipedia.org/wiki/5-cell], with three output tetrahedral faces and two input tetrahedral faces.

Let’s see what its boundaries look like, starting from the input.

[9]:

penta_input = pentachoron.input
penta_input.draw()

[image: ../_images/notebooks_simplicescubes_17_0.png]

This is a slice of a 3-dimensional diagram with two 3-dimensional cells.

This is still hard to visualise directly in three dimensions; instead, we are going to try to visualise it as a sequence of rewrites on 2-dimensional diagrams.

For that purpose, we use the generate_layering method, which creates a “layering” of a diagram into a sequence of rewrites, one for each one of its top-dimensional cells. Then, we can

	get a list of the layers with the layers attribute, or

	get a list of the corresponding “rewrite steps” with the rewrite_steps attribute.

[10]:

penta_input.generate_layering()
rewalt.strdiags.draw(*penta_input.layers)

[image: ../_images/notebooks_simplicescubes_19_0.png]

[image: ../_images/notebooks_simplicescubes_19_1.png]

[11]:

rewalt.strdiags.draw(*penta_input.rewrite_steps)

[image: ../_images/notebooks_simplicescubes_20_0.png]

[image: ../_images/notebooks_simplicescubes_20_1.png]

[image: ../_images/notebooks_simplicescubes_20_2.png]

So, we can see that

	first the 3-dimensional face El(3, 0) “rewrites” the triangles El(2, 0) and El(2, 1) into the triangles El(2, 3) and El(2, 4),

	then the 3-dimensional face El(3, 1) “rewrites” the triangles El(2, 2) and El(2, 3) into the triangles El(2, 5) and El(2, 6).

We can also create a gif “movie” of the rewrite steps (and make it loop backwards so it doesn’t stop too soon).

[12]:

rewalt.strdiags.to_gif(
 *penta_input.rewrite_steps,
 loop=True, path='simplicescubes_1.gif')

[image: PentaInput]

Now, let’s look at the output boundary of the oriented 4-simplex.

[13]:

penta_output = pentachoron.output
penta_output.draw()

[image: ../_images/notebooks_simplicescubes_25_0.png]

This is the slice of a 3-dimensional diagram with three 3-dimensional cells. Let’s proceed as with the input.

[14]:

penta_output.generate_layering()
rewalt.strdiags.draw(*penta_output.layers)

[image: ../_images/notebooks_simplicescubes_27_0.png]

[image: ../_images/notebooks_simplicescubes_27_1.png]

[image: ../_images/notebooks_simplicescubes_27_2.png]

[15]:

rewalt.strdiags.draw(*penta_output.rewrite_steps)

[image: ../_images/notebooks_simplicescubes_28_0.png]

[image: ../_images/notebooks_simplicescubes_28_1.png]

[image: ../_images/notebooks_simplicescubes_28_2.png]

[image: ../_images/notebooks_simplicescubes_28_3.png]

Let’s also make a movie of these.

[16]:

rewalt.strdiags.to_gif(
 *penta_output.rewrite_steps, loop=True,
 path='simplicescubes_2.gif')

[image: PentaOutput]

The two sides of the oriented 4-simplex are, in fact, the two sides of an equation dual to Mac Lane’s pentagon. This was featured at the end of this other notebook.

Maps of simplices

So far we have only looked at the oriented simplices “in isolation”. Let’s see how we can use rewalt to understand their face and degeneracy maps.

Faces are quite simple; let’s look at the example of the 2-simplex. This has 3 faces.

[17]:

triangle.draw()
for n in range(3):
 triangle.simplex_face(n).draw()

[image: ../_images/notebooks_simplicescubes_34_0.png]

[image: ../_images/notebooks_simplicescubes_34_1.png]

[image: ../_images/notebooks_simplicescubes_34_2.png]

[image: ../_images/notebooks_simplicescubes_34_3.png]

By comparing labels, we can see that

	the 0th face of the 2-simplex is the rightmost output,

	the 1st face of the 2-simplex is the only input, and

	the 2nd face of the 2-simplex is the leftmost output.

In general, the faces of an oriented simplex alternate between inputs and outputs, always starting with an output at index 0.

Let’s look at degeneracies; these are somewhat more interesting. There are two degeneracies on the 1-simplex.

[18]:

arrow.draw()
for n in range(2):
 arrow.simplex_degeneracy(n).draw()

[image: ../_images/notebooks_simplicescubes_36_0.png]

[image: ../_images/notebooks_simplicescubes_36_1.png]

[image: ../_images/notebooks_simplicescubes_36_2.png]

The two diagrams represent two surjective (“collapsing”) maps from the 2-simplex to the 1-simplex. The string diagrams tell us that

	the 0th degeneracy sends the 2-cell, its input, and the rightmost output of the 2-simplex onto the 1-cell of the 1-simplex, and collapses the leftmost output onto its input 0-cell;

	the 1st degeneracy sends the 2-cell, its input, and the leftmost output of the 2-simplex onto the 1-cell of the 1-simplex, and collapses the rightmost output onto its output 0-cell.

Now, let’s take a look at one degeneracy of the 2-simplex.

[19]:

triangle.simplex_degeneracy(0).draw()

[image: ../_images/notebooks_simplicescubes_38_0.png]

This represents a collapsing map from the 3-simplex onto the 2-simplex; the string diagram tells us which input and which output of the 3-simplex are collapsed, and which are sent to the 2-cell of the 2-simplex.

Let’s obtain some more information by looking at the boundaries.

[20]:

triangle.simplex_degeneracy(0).draw_boundaries()

[image: ../_images/notebooks_simplicescubes_40_0.png]

[image: ../_images/notebooks_simplicescubes_40_1.png]

This tells us exactly how the two collapsed 2-dimensional faces of the 3-simplex are collapsed: we can tell that, in both cases, it is the leftmost output that is collapsed, hence the 0-th degeneracy of the 1-simplex is used.

By the way, if we want a precise (but not very intuitive) description of a map, we can use the Hasse diagram visualisation:

[21]:

triangle.simplex_degeneracy(0).hasse()

[image: ../_images/notebooks_simplicescubes_42_0.png]

This shows us the “oriented face poset” of the source of the map — here, the 3-simplex — with each element labelled with its image through the map. For example, the third element of the third row from the bottom is labelled with El(1, 0); this means that the map sends El(2, 2) to El(1, 0) (we are counting from 0).

Constructing a simplicial set

Let’s briefly look at how we can use rewalt to construct a simplicial set. As a simple example, we will construct the 3-dimensional real projective space \(\mathbb{R}P^3\), with its cell structure made up of a single cell in each dimension.

The first step is to create an empty diagrammatic set.

[22]:

RP3 = rewalt.DiagSet()

To ensure that this is really a simplicial set, we only add generators with the add_simplex method, taking, as arguments, the simplicial faces of the new generator in the same order as given by simplex_face.

(In dimension 0 and 1, there’s no substantial difference between add and add_simplex).

[23]:

c0 = RP3.add_simplex('c0')
c1 = RP3.add_simplex('c1', c0, c0)

We construct degenerate simplices over the generators with the simplex_degeneracy method.

[24]:

c2 = RP3.add_simplex('c2', c1, c0.simplex_degeneracy(0), c1)
c2.draw()

[image: ../_images/notebooks_simplicescubes_49_0.png]

[25]:

c3 = RP3.add_simplex(
 'c3',
 c2, c1.simplex_degeneracy(0), c1.simplex_degeneracy(1), c2)
c3.draw()

[image: ../_images/notebooks_simplicescubes_50_0.png]

[26]:

c3.draw_boundaries()

[image: ../_images/notebooks_simplicescubes_51_0.png]

[image: ../_images/notebooks_simplicescubes_51_1.png]

There we go; RP3 is now a simplicial model of the 3-dimensional real projective space. We can check that this is “really” a simplicial set:

[27]:

RP3.issimplicial

[27]:

True

In future releases, we plan to add features that will allow us to automatically compute some topological invariants of cell complexes constructed as DiagSet objects.

Oriented cubes

Let’s move on from simplices to cubes; these can be obtained with the Shape.cube constructor. Unlike in simplices, there is no (-1)-cube. The 0-cube and the 1-cube are, in fact, the same as the 0-simplex and the 1-simplex.

[28]:

assert point == rewalt.Shape.cube(0)
assert arrow == rewalt.Shape.cube(1)

So the first interesting case is the oriented 2-cube: this is a square with two output faces and two input faces.

[29]:

square = rewalt.Shape.cube(2)
square.draw()

[image: ../_images/notebooks_simplicescubes_58_0.png]

Next, the oriented 3-cube has three output faces and three input faces. (In fact, the oriented n-cube always has n inputs and n outputs.)

[30]:

cube = rewalt.Shape.cube(3)
cube.draw()

[image: ../_images/notebooks_simplicescubes_60_0.png]

[31]:

cube.draw_boundaries()

[image: ../_images/notebooks_simplicescubes_61_0.png]

[image: ../_images/notebooks_simplicescubes_61_1.png]

You may see the 2-dimensional boundaries of the oriented 3-cube, in string diagrams, as the shapes of the two sides of the Yang-Baxter equation [https://en.wikipedia.org/wiki/Yang%E2%80%93Baxter_equation], or the two sides of the third Reidemeister move [https://ncatlab.org/nlab/show/Reidemeister+move].

Let’s move on to the 4-dimensional cube.

[32]:

tesseract = rewalt.Shape.cube(4)
tesseract.draw()

[image: ../_images/notebooks_simplicescubes_63_0.png]

As expected, it has four input faces and four output faces. Let’s proceed as we did with the 4-simplex to understand what is happening.

[33]:

tess_input = tesseract.input
tess_input.draw(wirelabels=False)

[image: ../_images/notebooks_simplicescubes_65_0.png]

(We have deactivated wire labels to make the image less crowded.)

[34]:

tess_input.generate_layering()
rewalt.strdiags.draw(*tess_input.layers)

[image: ../_images/notebooks_simplicescubes_67_0.png]

[image: ../_images/notebooks_simplicescubes_67_1.png]

[image: ../_images/notebooks_simplicescubes_67_2.png]

[image: ../_images/notebooks_simplicescubes_67_3.png]

[35]:

rewalt.strdiags.draw(*tess_input.rewrite_steps, wirelabels=False)

[image: ../_images/notebooks_simplicescubes_68_0.png]

[image: ../_images/notebooks_simplicescubes_68_1.png]

[image: ../_images/notebooks_simplicescubes_68_2.png]

[image: ../_images/notebooks_simplicescubes_68_3.png]

[image: ../_images/notebooks_simplicescubes_68_4.png]

Now we turn the sequence of rewrite steps into a gif.

[36]:

rewalt.strdiags.to_gif(
 *tess_input.rewrite_steps, loop=True,
 wirelabels=False,
 path='simplicescubes_3.gif')

[image: TessInput]

Next we focus on the output of the 4-cube.

[37]:

tess_output = tesseract.output
tess_output.draw(wirelabels=False)

[image: ../_images/notebooks_simplicescubes_73_0.png]

[38]:

tess_output.generate_layering()
rewalt.strdiags.draw(*tess_output.layers)

[image: ../_images/notebooks_simplicescubes_74_0.png]

[image: ../_images/notebooks_simplicescubes_74_1.png]

[image: ../_images/notebooks_simplicescubes_74_2.png]

[image: ../_images/notebooks_simplicescubes_74_3.png]

[39]:

rewalt.strdiags.to_gif(
 *tess_output.rewrite_steps, loop=True,
 wirelabels=False,
 path='simplicescubes_4.gif')

[image: TessOutput]

In the two rewrite sequences corresponding to the input and output boundary of the 4-cube, you may recognise the shapes of the two sides of the Zamolodchikov tetrahedron equation [https://arxiv.org/abs/math/0307263].

(Why “tetrahedron equation” if its shape is a 4-cube? Not sure!)

Maps of cubes

In contrast to simplices, faces of cubes are specified by two arguments: thinking of the n-cube as \([0, 1]^n\), one argument is an integer ranging from 0 to (n-1), specifying which coordinate to fix, and the other is a bit (for us, a sign: '-' or '+') specifying whether to set the coordinate to 0 or to 1.

[40]:

for n in range(2):
 for sign in ('-', '+'):
 square.cube_face(n, sign).draw()

[image: ../_images/notebooks_simplicescubes_79_0.png]

[image: ../_images/notebooks_simplicescubes_79_1.png]

[image: ../_images/notebooks_simplicescubes_79_2.png]

[image: ../_images/notebooks_simplicescubes_79_3.png]

Cubes also have two different kinds of “collapse” maps:

	degeneracies, which collapse the cube along a single coordinate (specified by an integer argument), and

	connections, which “fold” the cube along a pair of consecutive coordinates (specified by an integer argument), in two different ways (specified by a “sign” argument).

In rewalt, we can get a string-diagrammatic picture of these collapse maps.

[41]:

for n in range(2):
 arrow.cube_degeneracy(n).draw()

[image: ../_images/notebooks_simplicescubes_81_0.png]

[image: ../_images/notebooks_simplicescubes_81_1.png]

[42]:

for sign in ('-', '+'):
 arrow.cube_connection(0, sign).draw()

[image: ../_images/notebooks_simplicescubes_82_0.png]

[image: ../_images/notebooks_simplicescubes_82_1.png]

As we saw in another notebook, being familiar with these degeneracies, which are neither “units” or “unitors”, can be handy when constructing presentations of monoidal or higher algebraic theories.

Constructing a cubical set

Constructing a cubical set with connections is just like constructing a simplicial set, except we use the add_cube method instead of the add_simplex method when adding generators.

Let’s construct a simple cubical model of the torus, with one 0-cell, two 1-cells, and one 2-cell.

[43]:

T = rewalt.DiagSet()
pt = T.add_cube('pt')
a = T.add_cube('a', pt, pt)
b = T.add_cube('b', pt, pt)
s = T.add_cube('s', a, a, b, b)
s.draw()

[image: ../_images/notebooks_simplicescubes_85_0.png]

That’s all! T is a torus.

We can check that the diagrammatic set we constructed is, indeed, a cubical set:

[44]:

T.iscubical

[44]:

True

Notice that if we look at this diagrammatic set as string rewrite system instead, it is a presentation of the free commutative monoid on the 2 generators a and b. Of course, the free abelian group on two generators is the first homology group of the torus.

Mixing them together

One of the reasons why simplices and cubes are “nice” families of shapes is that both are generated by the iteration of a binary operation, which defines a monoidal structure on their respective shape categories:

	simplices are iterated joins of points;

	cubes are iterated products of intervals.

In fact, both joins and products have “oriented” counterparts, and all shapes of rewalt are closed under both of these operations:

	the join of shapes, accessed either with the join method, or with the shift operators >> and <<, and

	the Gray product of shapes, accessed either with the gray method, or with the multiplication operator *.

Indeed, this is how rewalt constructs oriented simplices and oriented cubes.

[45]:

assert arrow == point >> point
assert triangle == arrow >> point
assert square == arrow * arrow
assert cube == arrow * square

Joins are useful, for instance, for constructing cones, while products are useful for constructing cylinders. So the first operation is natural in a simplicial context, but not in a cubical context; while the second operation is natural in a cubical context but not in a simplicial context.

One nice thing about diagrammatic sets is that we do not need to choose! We can build a cylinder on a simplex…

[46]:

cylinder = arrow * triangle
cylinder.draw()

[image: ../_images/notebooks_simplicescubes_92_0.png]

[47]:

cylinder.draw_boundaries()

[image: ../_images/notebooks_simplicescubes_93_0.png]

[image: ../_images/notebooks_simplicescubes_93_1.png]

… and we can build a cone on a cube.

[48]:

cone = square >> point
cone.draw()

[image: ../_images/notebooks_simplicescubes_95_0.png]

[49]:

cone.draw_boundaries()

[image: ../_images/notebooks_simplicescubes_96_0.png]

[image: ../_images/notebooks_simplicescubes_96_1.png]

The Eckmann–Hilton argument

A nice theoretical feature of rewalt is “topological soundness”: a diagrammatic set can be geometrically realised as a CW complex with one cell for each of its generators, and every diagram that we construct in the diagrammatic set corresponds to a valid homotopy in its realisation.

One of the first non-trivial homotopies that one encounters in algebraic topology are the “braiding” homotopies between two 2-cells, exhibiting the fact that \(\pi_2\) of a space is always an abelian group. The construction of these homotopies is known as Eckmann–Hilton argument, and is also the basis of the identification of braided monoidal categories with “doubly degenerate” tricategories [https://arxiv.org/abs/0706.2307].

In this notebook, we will implement the Eckmann–Hilton argument in rewalt, by constructing both homotopies in a diagrammatic set with a single 0-dimensional generator and two 2-dimensional generators. Thanks to topological soundness, you can also see this as a formal proof of the usual homotopical Eckmann–Hilton.

First of all, let’s create a diagrammatic set, and add all the generators. We will colour-code the two 2-cells, one in blue and one in magenta.

[1]:

import rewalt

EH = rewalt.DiagSet()
pt = EH.add('pt', draw_label=False)
a = EH.add('a', pt.unit(), pt.unit(), color='blue')
b = EH.add('b', pt.unit(), pt.unit(), color='magenta')

First braiding

The “braiding homotopies” will be made of degenerate cells, starting from the pasting “b after a”, and ending in the pasting “a after b”.

Our construction of these homotopies will be, essentially, an implementation of the “train tracks” proof by André Joyal and Joachim Kock [https://arxiv.org/abs/math/0602084]. Let’s start from the beginning.

[2]:

start = a.paste(b)
start.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_3_0.png]

Let’s introduce some weak units between a and b; one would be sufficient, but we’ll do two for reasons of symmetry.

[3]:

rew1 = start.rewrite(0, a.runitor('+'))
rew1.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_5_0.png]

[4]:

rew2 = rew1.output.rewrite(2, b.lunitor('+'))
rew2.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_6_0.png]

Now, we want to “split” the units in positions (1, 2) into two “train tracks”. This can be done with a “fully degenerate” cell over pt, of the appropriate shape:

[5]:

globe = rewalt.Shape.globe(2)
triangle = rewalt.Shape.simplex(2)

track_split_shape = globe.paste(globe).atom(triangle.paste(triangle.dual()))
track_split_shape.draw_boundaries()

[image: ../_images/notebooks_eckmannhilton_8_0.png]

[image: ../_images/notebooks_eckmannhilton_8_1.png]

You can see that track_split_shape is a 3-dimensional shape with input and output of the shape we desire, going from “single track” (pasting of two 2-globes) to “double track” (pasting of a 2-simplex with its dual).

To get a “fully degenerate” cell over pt of shape track_split_shape, we use the degeneracy method.

[6]:

track_split = pt.degeneracy(track_split_shape)
track_split.draw_boundaries()

[image: ../_images/notebooks_eckmannhilton_10_0.png]

[image: ../_images/notebooks_eckmannhilton_10_1.png]

[7]:

rew3 = rew2.output.rewrite([1, 2], track_split)
rew3.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_11_0.png]

Now, our goal is to “move a to the right track, and move b to the left track”. This can be done with appropriate degenerate cells over a and b.

These degenerate cells are neither units or unitors. However, just like units and unitors, they can be obtained from pullbacks of a and b over particular collapse maps from a “partially collapsed cylinder” on their shape, as provided by the inflate method of the Shape class.

(I do not expect that this is particulary intuitive; you should try fiddling with inflate to get an idea of the collapses you can get.)

This, for example, is the map we can use to move a from the bottom to the right track.

[8]:

switch_br_map = globe.inflate(globe.all().boundary('+', 0))
switch_br_map.draw_boundaries()

[image: ../_images/notebooks_eckmannhilton_13_0.png]

[image: ../_images/notebooks_eckmannhilton_13_1.png]

Every other “switch” map we will get as a dual of this one. For example, the “top-to-left” that we need for b is the dual in dimensions 1 and 2 (“horizontal and vertical flip”).

[9]:

switch_tl_map = switch_br_map.dual(1, 2)
switch_tl_map.draw_boundaries()

[image: ../_images/notebooks_eckmannhilton_15_0.png]

[image: ../_images/notebooks_eckmannhilton_15_1.png]

[10]:

a_switch_br = a.pullback(switch_br_map)

rew4 = rew3.output.rewrite([0, 1], a_switch_br)
rew4.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_16_0.png]

[11]:

b_switch_tl = b.pullback(switch_tl_map)

rew5 = rew4.output.rewrite([1, 3], b_switch_tl)
rew5.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_17_0.png]

Now we will move a to the top, then b to the bottom. For that, we use pullbacks along other duals of our original “switch” map.

[12]:

switch_rt_map = switch_br_map.dual(2, 3)
a_switch_rt = a.pullback(switch_rt_map)

rew6 = rew5.output.rewrite([2, 3], a_switch_rt)
rew6.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_19_0.png]

[13]:

switch_lb_map = switch_br_map.dual(1, 3)
b_switch_lb = b.pullback(switch_lb_map)

rew7 = rew6.output.rewrite([0, 1], b_switch_lb)
rew7.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_20_0.png]

The relative positions of a and b have been exchanged! Now we only need to get rid of the “train tracks” and other units between them.

We used degenerate cells to introduce them, and degenerate cells are always “weakly invertible”, so we can just use their “weak inverses”, obtained with the inverse method.

[14]:

rew8 = rew7.output.rewrite([1, 2], track_split.inverse)
rew8.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_22_0.png]

[15]:

rew9 = rew8.output.rewrite([0, 1], b.runitor('-'))
rew9.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_23_0.png]

[16]:

rew10 = rew9.output.rewrite([1, 2], a.lunitor('-'))
rew10.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_24_0.png]

We are done! Let’s put all our rewrites together, and see what our proof looks like as a slice of a 3-dimensional diagram.

[17]:

eh1 = rewalt.Diagram.with_layers(
 rew1, rew2, rew3, rew4, rew5, rew6, rew7, rew8, rew9, rew10)
eh1.draw()

[image: ../_images/notebooks_eckmannhilton_26_0.png]

See? It’s a braiding where the b strand is passing over the a strand.

We can also assemble all our rewrites into a gif animation. We will also make it loop backwards.

[18]:

rewalt.strdiags.to_gif(
 *eh1.rewrite_steps, degenalpha=0.2,
 loop=True, path='eckmannhilton_1.gif')

[image: EckmannHilton1]

Second braiding

In our proof, we made the choice of moving a onto the right track, and b onto the left track; but we might as well have made a different choice. This would have led to a non-equivalent homotopy, the dual braiding.

Let’s go back to the step where we had the choice, and make a different one. This corresponds to “horizontally flipping” all the maps we used the first time.

[19]:

rew3.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_31_0.png]

[20]:

switch_bl_map = switch_br_map.dual(1)
a_switch_bl = a.pullback(switch_bl_map)

rew4d = rew3.output.rewrite([0, 1], a_switch_bl)
rew4d.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_32_0.png]

[21]:

switch_tr_map = switch_tl_map.dual(1)
b_switch_tr = b.pullback(switch_tr_map)

rew5d = rew4d.output.rewrite([2, 3], b_switch_tr)
rew5d.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_33_0.png]

[22]:

switch_lt_map = switch_rt_map.dual(1)
a_switch_lt = a.pullback(switch_lt_map)

rew6d = rew5d.output.rewrite([1, 3], a_switch_lt)
rew6d.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_34_0.png]

[23]:

switch_rb_map = switch_lb_map.dual(1)
b_switch_rb = b.pullback(switch_rb_map)

rew7d = rew6d.output.rewrite([0, 2], b_switch_rb)
rew7d.output.draw(nodepositions=True)

[image: ../_images/notebooks_eckmannhilton_35_0.png]

That’s it; the last few steps are the same as the first time. Let’s put the whole sequence together.

[24]:

eh2 = rewalt.Diagram.with_layers(
 rew1, rew2, rew3, rew4d, rew5d, rew6d, rew7d, rew8, rew9, rew10)
eh2.draw()

[image: ../_images/notebooks_eckmannhilton_37_0.png]

See? Now it is the blue (a) strand that crosses over the magenta (b) strand.

And let’s make another animation.

[25]:

rewalt.strdiags.to_gif(
 *eh2.rewrite_steps, degenalpha=0.2,
 loop=True, path='eckmannhilton_2.gif')

[image: EckmannHilton2]

The diagrams eh1 and eh2 have the same input and output; they could, in principle, be the input and output of another cell.

By topological soundness, however, we know that there isn’t a diagram between eh1 and eh2: the geometric realisation of EH is a bouquet of two 2-spheres, and in this space there isn’t a homotopy between the two “braidings”.

You are welcome to add one by hand, if you really want.

[26]:

symmetriser = EH.add('symmetriser', eh1, eh2)
symmetriser.draw()

[image: ../_images/notebooks_eckmannhilton_42_0.png]

Presenting a category

The “higher-dimensional rewrite systems” that we construct in rewalt are interpretable in higher-dimensional categories, but they are, in general, different from higher-dimensional categories, in that they have no notion of composition of diagrams; that is, there’s no way, in general, to “turn a diagram with many n-cells into a single n-cell”.

Nevertheless, rewalt contains an implementation of a model of higher categories, in the form of diagrammatic sets with weak composites [https://arxiv.org/abs/2007.14505]. This allows us to “declare” a cell to be the composite of a diagram; the composition is exhibited by a higher-dimensional compositor cell.

In this notebook, we will use the dedicated methods to construct a presentation of a simple finite category, consisting of a commuting square of four morphisms.

Adding all objects and morphisms

We start by creating an empty DiagSet, and adding all the objects and morphisms of our category. We have four objects (0-generators).

[1]:

import rewalt

C = rewalt.DiagSet()

x0 = C.add('x0')
x1 = C.add('x1')
x2 = C.add('x2')
x3 = C.add('x3')

Then we add the four morphisms (1-generators) that form the boundary of our commuting square.

[2]:

f0 = C.add('f0', x0, x1)
f1 = C.add('f1', x1, x3)
g0 = C.add('g0', x0, x2)
g1 = C.add('g1', x2, x3)

Now we have two parallel diagrams of two 1-cells: f0.paste(f1) and g0.paste(g1). We add the “diagonal” morphism that will be the composite of both diagrams.

[3]:

h = C.add('h', x0, x3)

That’s it; now we move on to the compositors.

Adding compositors

We declare a generator to be the “weak composite” of a diagram with the make_composite method. This will add a “compositor” 2-cell, and return it as a Diagram object.

[4]:

c_f = C.make_composite('h', f0.paste(f1))
c_f.draw()

[image: ../_images/notebooks_presentcategory_9_0.png]

[5]:

c_g = C.make_composite('h', g0.paste(g1))
c_g.draw()

[image: ../_images/notebooks_presentcategory_10_0.png]

We can check that a diagram has a composite with the hascomposite attribute; if a diagram has a composite, we can retrieve it with the composite attribute.

[6]:

f0.paste(f1).hascomposite

[6]:

True

[7]:

f0.paste(f1).composite == h

[7]:

True

A compositor allows us to rewrite a diagram into a cell. Now, according to the theory, to exhibit a genuine weak composite, the compositor would need to be weakly invertible.

As we saw in another notebook, since weak invertibility requires an infinite “tower” of cells, the approach of rewalt is to “invert only when needed”. That also applies to compositors, which are created in “one direction only”, and must be explicitly inverted if needed.

(Another reason to not invert by default is that one may want to use DiagSet objects to implement different kinds of higher structures, such as representable multicategories [https://www.sciencedirect.com/science/article/pii/S0001870899918777] or “lax” versions thereof, where it is important that compositors only go “one way”.)

[8]:

c_f_inv, c_f_rinvertor, c_f_linvertor = C.invert(c_f)
c_f_inv.draw()

[image: ../_images/notebooks_presentcategory_15_0.png]

Now that we have an inverse compositor, we can “rewrite” g0.paste(g1) into f0.paste(f1) via their shared composite.

[9]:

g_to_f = c_g.paste(c_f_inv)
g_to_f.draw()

[image: ../_images/notebooks_presentcategory_17_0.png]

To go the other way around, we need to invert the compositor for g0.paste(g1).

[10]:

c_g_inv, c_g_rinvertor, c_g_linvertor = C.invert(c_g)

f_to_g = c_f.paste(c_g_inv)
f_to_g.draw()

[image: ../_images/notebooks_presentcategory_19_0.png]

This pair of diagrams “embodies” the commuting square with sides f0, f1, g0, g1.

We can use the “invertors” to show that the two diagrams are each other’s weak inverse.

[11]:

f_to_g.paste(g_to_f).draw(nodepositions=True)

[image: ../_images/notebooks_presentcategory_21_0.png]

[12]:

rew1 = f_to_g.paste(g_to_f).rewrite([1, 2], c_g_linvertor)
rew1.output.draw(nodepositions=True)

[image: ../_images/notebooks_presentcategory_22_0.png]

[13]:

rew2 = rew1.output.rewrite([0, 1], c_f.runitor('-'))
rew2.output.draw(nodepositions=True)

[image: ../_images/notebooks_presentcategory_23_0.png]

[14]:

rew3 = rew2.output.rewrite([0, 1], c_f_rinvertor)
rew3.output.draw()

[image: ../_images/notebooks_presentcategory_24_0.png]

Composites involving units

Now in C all 1-dimensional diagrams have composites, so we can see C as a category.

Except, in fact, not all 1-dimensional diagrams have composites that C knows of!

[15]:

x0.unit().paste(f0).hascomposite

[15]:

False

Nevertheless, we can certainly turn this diagram into a single cell, using the left unitor for f0.

[16]:

f0.lunitor('-').draw()

[image: ../_images/notebooks_presentcategory_28_0.png]

This is even already “weakly invertible”, as all degenerate cells are.

[17]:

f0.lunitor('-').inverse.draw()

[image: ../_images/notebooks_presentcategory_30_0.png]

So why does rewalt not consider unitors to be compositors?

There is a good reason: rewalt does not make a distinction between presentations of categories, bicategories, or n-categories for any other n. And there are certainly non-strict bicategories in which the composite of a 1-cell with a unit is not equal to the 1-cell.

So if we want C to know that f0 is, indeed, the composite of x0.unit() and f0, we need to make it explicit.

[18]:

c_x0_f0 = C.make_composite('f0', x0.unit().paste(f0))

This will add a compositor which is not the same as the left unitor on f0.

(The reason you cannot declare an existing degenerate cell to be a compositor is that rewalt wants compositors to be generators, so it can remember which compositors a DiagSet contains just by their list of names).

So if we want to “equate” the compositor to the unitor, we have to do it “weakly”, by adding a 3-cell between them.

[19]:

comp_to_lu = C.add('comp_to_lu', c_x0_f0, f0.lunitor('-'))
comp_to_lu.draw()

[image: ../_images/notebooks_presentcategory_34_0.png]

diagrams

Implements diagrammatic sets and diagrams.

	rewalt.diagrams.DiagSet()

	Class for diagrammatic sets, a model of higher-dimensional rewrite systems and/or directed cell complexes.

	rewalt.diagrams.Diagram(ambient)

	Class for diagrams, that is, mappings from a shape to an "ambient" diagrammatic set.

	rewalt.diagrams.SimplexDiagram(ambient)

	Subclass of Diagram for diagrams whose shape is an oriented simplex.

	rewalt.diagrams.CubeDiagram(ambient)

	Subclass of Diagram for diagrams whose shape is an oriented cube.

	rewalt.diagrams.PointDiagram(ambient)

	Subclass of Diagram for diagrams whose shape is a point.

diagrams.DiagSet

	
class rewalt.diagrams.DiagSet

	Bases: object

Class for diagrammatic sets, a model of higher-dimensional rewrite
systems and/or directed cell complexes.

A diagrammatic set is constructed by creating an empty object, then
adding named generators of different dimensions. The addition of a
generator models the gluing of an atomic shapes.Shape object
along its boundary.

This operation produces a diagram, that is, a map from a shape
to the diagrammatic set, modelled as a Diagram object.
From these “basic” diagrams, we can construct “derived” diagrams
either by pasting, or by pulling back along shape maps (this is
used to produce “unit” or “degenerate” diagrams).

To add a 0-dimensional generator (a point), we just give it a name.
In the main constructor add(), the gluing of an
n-dimensional generator is specified by a pair of round,
(n-1)-dimensional Diagram objects, describing
the gluing maps for the input and output boundaries of a shape.

Simplicial sets, cubical sets with connections, and reflexive globular
sets are all special cases of diagrammatic sets, where the generators
have simplicial, cubical, or globular shapes.
There are special constructors add_simplex() and
add_cube() for adding simplicial and cubical generators by
listing all their faces.

The generators of a diagrammatic set are, by default, “directed” and
not invertible. The class supports a model of weak or pseudo-
invertibility, where two generators being each other’s “weak inverse”
is witnessed by a pair of higher-dimensional generators (invertors).
This is produced by the methods invert() (creates an inverse) and
make_inverses() (makes an existing generator the inverse).

Diagrammatic sets do not have an intrinsic notion of composition
of diagrams, so they are not by themselves a model of higher categories.
However, the class supports a model of higher categories in which one
generator being the composite of a diagram is witnessed by a
higher-dimensional generator (a compositor). This is produced
by the methods compose() (creates a composite) and
make_composite() (makes an existing generator the composite).

Notes

There is an alternative constructor yoneda() which turns
a shapes.Shape object into a diagrammatic set with one
generator for every face of the shape.

Methods

	add(name[, input, output])

	Adds a generator and returns the diagram that maps the new generator into the diagrammatic set.

	add_cube(name, *faces, **kwargs)

	Variant of add() for cube-shaped generators.

	add_simplex(name, *faces, **kwargs)

	Variant of add() for simplex-shaped generators.

	compose(diagram[, name, compositorname])

	Given a round diagram, adds a weak composite for it, together with a compositor witnessing the composition, and returns them as diagrams.

	copy()

	Returns a copy of the object.

	invert(generatorname[, inversename, ...])

	Adds a weak inverse for a generator, together with left and right invertors that witness the inversion, and returns them as diagrams.

	make_composite(generatorname, diagram[, ...])

	Given a generator and a round diagram, it makes the first the weak composite of the second by adding a compositor, and returns the compositor as a diagram.

	make_inverses(generatorname1, generatorname2)

	Makes two generators each other's weak inverse by adding invertors, and returns the invertors.

	remove(generatorname)

	Removes a generator, together with all other generators that depend on it.

	update(generatorname, **kwargs)

	Updates the optional arguments of a generator.

	yoneda(shape)

	Alternative constructor creating a diagrammatic set from a shapes.Shape.

Attributes

	by_dim

	Returns the set of generators indexed by dimension.

	compositors

	Returns a dictionary of diagrams that have a non-trivial composite, indexed by their compositor's name.

	dim

	Returns the maximal dimension of a generator.

	generators

	Returns the object's internal representation of the set of generators and related data.

	iscubical

	Returns whether the diagrammatic sets is cubical, that is, all its generators are cube-shaped.

	issimplicial

	Returns whether the diagrammatic sets is simplicial, that is, all its generators are simplex-shaped.

	
property generators

	Returns the object’s internal representation of the set of
generators and related data.

This is a dictionary whose keys are the generators’ names.
For each generator, the object stores another dictionary,
which contains at least

	the generator’s shape (shape, shapes.Shape),

	the mapping of the shape (mapping,
list[list[hashable]]),

	the generator’s set of “faces”, that is, other generators
appearing as codimension-1 faces of the generator
(faces, set[hashable]),

	the generator’s set of “cofaces”, that is, other generators
that have the generator as a face (cofaces,
set[hashable]).

If the generator has been inverted, it will also contain

	its inverse’s name (inverse, hashable),

	the left invertor’s name (linvertor, hashable),

	the right invertor’s name (rinvertor, hashable).

If the generator happens to be a compositor, it will also
contain the name of the composite it is exhibiting
(composite, hashable).

This also stores any additional keyword arguments passed when
adding the generator.

	Returns

	generators – The generators data.

	Return type

	dict[dict]

	
property by_dim

	Returns the set of generators indexed by dimension.

	Returns

	by_dim – The set of generators indexed by dimension.

	Return type

	dict[hashable]

	
property compositors

	Returns a dictionary of diagrams that have a non-trivial
composite, indexed by their compositor’s name.

More precisely, rather than Diagram objects,
the dictionary stores the shape and mapping
data that allows to reconstruct them.

	Returns

	compositors – The dictionary of composed diagrams.

	Return type

	dict[dict]

	
property dim

	Returns the maximal dimension of a generator.

	Returns

	dim – The maximal dimension of a generator, or -1 if empty.

	Return type

	int

	
property issimplicial

	Returns whether the diagrammatic sets is simplicial, that is,
all its generators are simplex-shaped.

	Returns

	issimplicial – True if and only if the shape of every generator is
a shapes.Simplex object.

	Return type

	bool

	
property iscubical

	Returns whether the diagrammatic sets is cubical, that is,
all its generators are cube-shaped.

	Returns

	iscubical – True if and only if the shape of every generator is
a shapes.Cube object.

	Return type

	bool

	
add(name, input=None, output=None, **kwargs)

	Adds a generator and returns the diagram that maps the new
generator into the diagrammatic set.

The gluing of the generator is specified by a pair of round
diagrams with identical boundaries, corresponding to the input
and output diagrams of the new generator. If none are given,
adds a point (0-dimensional generator).

	Parameters

	
	name (hashable) – Name to assign to the new generator.

	input (Diagram, optional) – The input diagram of the new generator (default is None)

	output (Diagram, optional) – The output diagram of the new generator (default is None)

	Keyword Arguments

	
	color (multiple types) – Fill color when pictured as a node in string diagrams.
If stroke is not specified, this is
also the color when pictured as a wire.

	stroke (multiple types) – Stroke color when pictured as a node, and color when pictured
as a wire.

	draw_node (bool) – If False, no node is drawn when picturing the
generator in string diagrams.

	draw_label (bool) – If False, no label is drawn when picturing the
generator in string diagrams.

	Returns

	generator – The diagram picking the new generator.

	Return type

	Diagram

	Raises

	ValueError – If the name is already in use, or the input and output diagrams
 do not have round and matching boundaries.

	
add_simplex(name, *faces, **kwargs)

	Variant of add() for simplex-shaped generators.

The gluing of the generator is specified by a number of
SimplexDiagram objects, corresponding to the faces
of the new generator as listed by
SimplexDiagram.simplex_face.

	Parameters

	
	name (hashable) – Name to assign to the new generator.

	*faces (SimplexDiagram) – The simplicial faces of the new generator.

	Keyword Arguments

	**kwargs – Same as add().

	Returns

	generator – The diagram picking the new generator.

	Return type

	SimplexDiagram

	Raises

	ValueError – If the name is already in use, or the faces do not have
 matching boundaries.

	
add_cube(name, *faces, **kwargs)

	Variant of add() for cube-shaped generators.

The gluing of the generator is specified by a number of
CubeDiagram objects, corresponding to the faces
of the new generator as listed by
CubeDiagram.cube_face, in the order
(0, '-'), (0, '+'), (1, '-'),
(1, '+'), etc.

	Parameters

	
	name (hashable) – Name to assign to the new generator.

	*faces (CubeDiagram) – The cubical faces of the new generator.

	Keyword Arguments

	**kwargs – Same as add().

	Returns

	generator – The diagram picking the new generator.

	Return type

	CubeDiagram

	Raises

	ValueError – If the name is already in use, or the faces do not have
 matching boundaries.

	
invert(generatorname, inversename=None, rinvertorname=None, linvertorname=None, **kwargs)

	Adds a weak inverse for a generator, together
with left and right invertors that witness the
inversion, and returns them as diagrams.

Both the inverse and the invertors can be given custom names.
If the generator to be inverted is named 'a', the
default names are

	'a⁻¹' for the inverse,

	'inv(a, a⁻¹)' for the right invertor,

	'inv(a⁻¹, a)' for the left invertor.

In the theory of diagrammatic sets, weak invertibility would
correspond to the situation where the invertors themselves
are weakly invertible, coinductively.
In the implementation, we take an “invert when necessary”
approach, where invertors are not invertible by default, and
should be inverted when needed.

Notes

The right invertor for the generator is the left invertor
for its inverse, and the left invertor for the generator is the
right invertor for its inverse.

	Parameters

	
	generatorname (hashable) – Name of the generator to invert.

	inversename (hashable, optional) – Name assigned to the inverse.

	rinvertorname (hashable, optional) – Name assigned to the right invertor.

	linvertorname (hashable, optional) – Name assigned to the left invertor.

	Keyword Arguments

	**kwargs – Passed to add() when adding the inverse.

	Returns

	
	inverse (Diagram) – The diagram picking the inverse.

	rinvertor (Diagram) – The diagram picking the right invertor.

	linvertor (Diagram) – The diagram picking the left invertor.

	Raises

	ValueError – If the generator is already inverted, or 0-dimensional.

	
make_inverses(generatorname1, generatorname2, rinvertorname=None, linvertorname=None)

	Makes two generators each other’s weak inverse by adding
invertors, and returns the invertors.

In what follows, “right/left” invertors are relative to
the first generator.
Both invertors can be given custom names.
If the generators are named 'a', 'b', the
default names for the invertors are

	'inv(a, b)' for the right invertor,

	'inv(b, a)' for the left invertor.

In the theory of diagrammatic sets, weak invertibility would
correspond to the situation where the invertors themselves
are weakly invertible, coinductively.
In the implementation, we take an “invert when necessary”
approach, where invertors are not invertible by default, and
should be inverted when needed.

	Parameters

	
	generatorname1 (hashable) – Name of the first generator.

	generatorname2 (hashable, optional) – Name of the second generator.

	rinvertorname (hashable, optional) – Name assigned to the right invertor.

	linvertorname (hashable, optional) – Name assigned to the left invertor.

	Returns

	
	rinvertor (Diagram) – The diagram picking the right invertor.

	linvertor (Diagram) – The diagram picking the left invertor.

	Raises

	ValueError – If the generators are already inverted, or 0-dimensional,
 or do not have compatible boundaries.

	
compose(diagram, name=None, compositorname=None, **kwargs)

	Given a round diagram, adds a weak composite for it,
together with a compositor witnessing the composition, and
returns them as diagrams.

Both the composite and the compositor can be given custom names.
If the diagram to be composed is named 'a', the
default names are

	'⟨a⟩' for the composite,

	'comp(a)' for the compositor.

In the theory of diagrammatic sets, a weak composite is
witnessed by a weakly invertible compositor.
In the implementation, we take an “invert when necessary”
approach, where compositors are not invertible by default, and
should be inverted when needed.

Notes

A cell (a diagram whose shape is an atom) is treated as already
having itself as a composite, witnessed by a unit cell; this
method can only be used on non-atomic diagrams.

	Parameters

	
	diagram (Diagram) – The diagram to compose.

	name (hashable, optional) – Name of the weak composite.

	compositorname (hashable, optional) – Name of the compositor.

	Keyword Arguments

	**kwargs – Passed to add() when adding the composite.

	Returns

	
	composite (Diagram) – The diagram picking the composite.

	compositor (Diagram) – The diagram picking the compositor.

	Raises

	ValueError – If the diagram is not round, or already has a composite.

	
make_composite(generatorname, diagram, compositorname=None)

	Given a generator and a round diagram, it makes the first
the weak composite of the second by adding a compositor, and
returns the compositor as a diagram.

The compositor can be given a custom name.
If the diagram to be composed is named 'a', the
default name is 'comp(a)'.

In the theory of diagrammatic sets, a weak composite is
witnessed by a weakly invertible compositor.
In the implementation, we take an “invert when necessary”
approach, where compositors are not invertible by default, and
should be inverted when needed.

Notes

A cell (a diagram whose shape is an atom) is treated as already
having itself as a composite, witnessed by a unit cell; this
method can only be used on non-atomic diagrams.

	Parameters

	
	generatorname (hashable) – Name of the generator that should be its composite.

	diagram (Diagram) – The diagram to compose.

	compositorname (hashable, optional) – Name of the compositor.

	Returns

	compositor – The diagram picking the compositor.

	Return type

	Diagram

	Raises

	ValueError – If the diagram is not round, or already has a composite, or
 the diagram and the generator do not have matching boundaries.

	
remove(generatorname)

	Removes a generator, together with all other generators
that depend on it.

	Parameters

	generatorname (hashable) – Name of the generator to remove.

	
update(generatorname, **kwargs)

	Updates the optional arguments of a generator.

	Parameters

	generatorname (hashable) – Name of the generator to update.

	Keyword Arguments

	**kwargs – Any arguments to update.

	Raises

	AttributeError – If the optional argument uses a private keyword.

	
copy()

	Returns a copy of the object.

	Returns

	copy – A copy of the object.

	Return type

	DiagSet

	
static yoneda(shape)

	Alternative constructor creating a diagrammatic set from
a shapes.Shape.

Mathematically, diagrammatic sets are certain sheaves on the
category of shapes and maps of shapes; this constructor
implements the Yoneda embedding of a shape.
This has an n-dimensional generator for each n-dimensional
element of the shape.

	Parameters

	shape (shapes.Shape) – A shape.

	Returns

	yoneda – The Yoneda-embedded shape.

	Return type

	DiagSet

diagrams.Diagram

	
class rewalt.diagrams.Diagram(ambient)

	Bases: object

Class for diagrams, that is, mappings from a shape to an
“ambient” diagrammatic set.

To create a diagram, we start from generators
of a diagrammatic set, returned by the DiagSet.add()
method or requested with indexer operators.

Then we produce other diagrams in two main ways:

	pulling back a diagram along a map of shapes
(pullback()), or

	pasting together two diagrams along their boundaries
(paste(), to_inputs(), to_outputs()).

In practice, the direct use of pullback(), which requires
an explicit shape map, can be avoided in common cases by using
unit(), lunitor(), runitor(), or the
specialised SimplexDiagram.simplex_degeneracy,
CubeDiagram.cube_degeneracy, and
CubeDiagram.cube_connection methods.

Notes

Initialising a Diagram directly creates an empty
diagram in a given diagrammatic set.

	Parameters

	ambient (DiagSet) – The ambient diagrammatic set.

Methods

	boundary(sign[, dim])

	Returns the boundary of a given orientation and dimension.

	draw(**params)

	Bound version of strdiags.draw().

	draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

	generate_layering()

	Assigns a layering to the diagram, iterating through all the layerings, and returns it.

	hasse(**params)

	Bound version of hasse.draw().

	lunitor([sign, positions])

	Returns a left unitor on the diagram: a degenerate diagram one dimension higher, with one boundary equal to the diagram, and the other equal to the diagram with units pasted to some of its inputs.

	paste(other[, dim])

	Given two diagrams and k such that the output k-boundary of the first is equal to the input k-boundary of the second, returns their pasting along the matching boundaries.

	pullback(shapemap[, name])

	Returns the pullback of the diagram along a shape map.

	rename(name)

	Renames the diagram.

	rewrite(positions, diagram)

	Returns the diagram representing the application of a higher-dimensional rewrite to a subdiagram, specified by the positions of its top-dimensional elements.

	runitor([sign, positions])

	Returns a right unitor on the diagram: a degenerate diagram one dimension higher, with one boundary equal to the diagram, and the other equal to the diagram with units pasted to some of its outputs.

	to_inputs(positions, other[, dim])

	Returns the pasting of another diagram along a round subshape of the input k-boundary, specified by the positions of its k-dimensional elements.

	to_outputs(positions, other[, dim])

	Returns the pasting of another diagram along a round subshape of the output k-boundary, specified by the positions of its k-dimensional elements.

	unit()

	Returns the unit on the diagram: a degenerate diagram one dimension higher, with input and output equal to the diagram.

	with_layers(fst, *layers)

	Given a non-zero number of diagrams that can be pasted sequentially in the top dimension, returns their pasting.

	yoneda(shapemap[, name])

	Alternative constructor creating a diagram from a shapes.ShapeMap.

Attributes

	ambient

	Returns the ambient diagrammatic set.

	composite

	Returns the composite of the diagram, if it exists.

	compositor

	Returns the compositor of the diagram, if it exists.

	dim

	Shorthand for shape.dim.

	hascomposite

	Returns whether the diagram has a composite.

	input

	Alias for boundary('-').

	inverse

	Returns the inverse of an invertible cell.

	iscell

	Shorthand for shape.isatom (a cell is a diagram whose shape is an atom).

	isdegenerate

	Returns whether the diagram is degenerate, that is, its image has dimension strictly lower than the dimension of its shape.

	isinvertiblecell

	Returns whether the diagram is an invertible cell.

	isround

	Shorthand for shape.isround.

	layers

	Returns the layering of the diagram corresponding to the current layering of the shape.

	linvertor

	Returns the left invertor for an invertible cell.

	mapping

	Returns the data specifying the mapping of shape elements to generators.

	name

	Returns the name of the diagram.

	output

	Alias for boundary('+').

	rewrite_steps

	Returns the sequence of rewrite steps associated to the current layering of the diagram.

	rinvertor

	Returns the right invertor for an invertible cell.

	shape

	Returns the shape of the diagram.

	
property name

	Returns the name of the diagram.

	Returns

	name – The name of the diagram.

	Return type

	hashable

	
property shape

	Returns the shape of the diagram.

	Returns

	shape – The shape of the diagram.

	Return type

	shapes.Shape

	
property ambient

	Returns the ambient diagrammatic set.

	Returns

	ambient – The ambient diagrammatic set.

	Return type

	DiagSet

	
property mapping

	Returns the data specifying the mapping of shape elements to
generators.

The mapping is specified as a list of lists, similar to
ogposets.OgMap, in the following way:
mapping[n][k] == s if the diagram sends El(n, k)
to the generator named s.

	Returns

	mapping – The data specifying the diagram’s assignment.

	Return type

	list[list[hashable]]

	
property layers

	Returns the layering of the diagram corresponding to the current
layering of the shape.

	Returns

	layers – The current layering.

	Return type

	list[Diagram]

	
property rewrite_steps

	Returns the sequence of rewrite steps associated to the current
layering of the diagram.

The 0-th rewrite step is the input boundary of the diagram.
For n > 0, the n-th rewrite step is the output
boundary of the (n-1)-th layer.

	Returns

	rewrite_steps – The current sequence of rewrite steps.

	Return type

	list[Diagram]

	
property dim

	Shorthand for shape.dim.

	
property isdegenerate

	Returns whether the diagram is degenerate, that is, its
image has dimension strictly lower than the dimension of its shape.

	Returns

	isdegenerate – True if and only if the diagram is degenerate.

	Return type

	bool

	
property isround

	Shorthand for shape.isround.

	
property iscell

	Shorthand for shape.isatom (a cell is a diagram
whose shape is an atom).

	
property isinvertiblecell

	Returns whether the diagram is an invertible cell.

A cell is invertible if either

	it is degenerate, or

	its image is an invertible generator.

	Returns

	isinvertiblecell – True if and only if the diagram is an invertible cell.

	Return type

	bool

	
property hascomposite

	Returns whether the diagram has a composite.

	Returns

	hascomposite – True if and only if the diagram has a composite.

	Return type

	bool

	
rename(name)

	Renames the diagram.

	Parameters

	name (hashable) – The new name for the diagram.

	
paste(other, dim=None, **params)

	Given two diagrams and k such that the output
k-boundary of the first is equal to the input
k-boundary of the second, returns their pasting along
the matching boundaries.

	Parameters

	
	fst (Diagram) – The first diagram.

	snd (Diagram) – The second diagram.

	dim (int, optional) – The dimension of the boundary along which they will be pasted
(default is min(fst.dim, snd.dim) - 1).

	Keyword Arguments

	cospan (bool) – Whether to also return the cospan of inclusions of the two
diagrams’ shapes into the pasting (default is False).

	Returns

	
	paste (Diagram) – The pasted diagram.

	paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two diagrams’ shapes into
their pasting.

	Raises

	ValueError – If the boundaries do not match.

	
to_outputs(positions, other, dim=None, **params)

	Returns the pasting of another diagram along a round subshape of
the output k-boundary, specified by the positions of its
k-dimensional elements.

	Parameters

	
	positions (list[int] | int) – The positions of the outputs along which to paste. If given
an integer n, interprets it as the list [n].

	other (Diagram) – The other diagram to paste.

	dim (int, optional) – The dimension of the boundary along which to paste
(default is self.dim - 1)

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the two diagrams’
shapes into the pasting (default is False).

	Returns

	
	to_outputs (Shape) – The pasted diagram.

	paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two diagrams’ shapes into
their pasting.

	Raises

	ValueError – If the boundaries do not match, or the pasting does not produce
 a well-formed shape.

	
to_inputs(positions, other, dim=None, **params)

	Returns the pasting of another diagram along a round subshape of
the input k-boundary, specified by the positions of its
k-dimensional elements.

	Parameters

	
	positions (list[int] | int) – The positions of the inputs along which to paste. If given
an integer n, interprets it as the list [n].

	other (Diagram) – The other diagram to paste.

	dim (int, optional) – The dimension of the boundary along which to paste
(default is self.dim - 1)

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the two diagrams’
shapes into the pasting (default is False).

	Returns

	
	to_inputs (Shape) – The pasted diagram.

	paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two diagrams’ shapes into
their pasting.

	Raises

	ValueError – If the boundaries do not match, or the pasting does not produce
 a well-formed shape.

	
rewrite(positions, diagram)

	Returns the diagram representing the application of a
higher-dimensional rewrite to a subdiagram, specified
by the positions of its top-dimensional elements.

This is in fact an alias for to_outputs() in the top
dimension, reflecting the intuitions of higher-dimensional
rewriting in this situation.

	Parameters

	
	positions (list[int] | int) – The positions of the top-dimensional elements to rewrite.
If given an integer n, interprets it as the list
[n].

	diagram (Diagram) – The diagram representing the rewrite to apply.

	Returns

	rewrite – The diagram representing the application of the rewrite to
the given positions.

	Return type

	Shape

	
pullback(shapemap, name=None)

	Returns the pullback of the diagram along a shape map.

	Parameters

	
	shapemap (shapes.ShapeMap) – The map along which to pull back.

	name (hashable, optional) – The name to give to the new diagram.

	Returns

	pullback – The pulled back diagram.

	Return type

	Diagram

	Raises

	ValueError – If the target of the map is not equal to the diagram shape.

	
boundary(sign, dim=None)

	Returns the boundary of a given orientation and dimension.

This is, by definition, the pullback of a diagram along the
inclusion map self.shape.boundary(sign, dim).

	Parameters

	
	sign (str) – Orientation: '-' for input, '+' for output.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary – The requested boundary.

	Return type

	Diagram

	
property input

	Alias for boundary('-').

	
property output

	Alias for boundary('+').

	
unit()

	Returns the unit on the diagram: a degenerate diagram one
dimension higher, with input and output equal to the diagram.

This is, by definition, the pullback of the diagram along
self.shape.inflate().

	Returns

	unit – The unit diagram.

	Return type

	Diagram

	
lunitor(sign='-', positions=None)

	Returns a left unitor on the diagram:
a degenerate diagram one dimension higher, with one
boundary equal to the diagram, and the other equal to the
diagram with units pasted to some of its inputs.

	Parameters

	
	sign (str, optional) – The boundary on which the units are: '-' (default)
for input, '+' for output.

	positions (list[int] | int) – The positions of the inputs to which a unit is attached
(default is all of the inputs). If given
an integer n, interprets it as the list [n].

	Returns

	lunitor – The left unitor diagram.

	Return type

	Diagram

	Raises

	ValueError – If the positions do not correspond to inputs.

	
runitor(sign='-', positions=None)

	Returns a right unitor on the diagram:
a degenerate diagram one dimension higher, with one
boundary equal to the diagram, and the other equal to the
diagram with units pasted to some of its outputs.

	Parameters

	
	sign (str, optional) – The boundary on which the units are: '-' (default)
for input, '+' for output.

	positions (list[int] | int) – The positions of the outputs to which a unit is attached
(default is all of the outputs). If given
an integer n, interprets it as the list [n].

	Returns

	runitor – The right unitor diagram.

	Return type

	Diagram

	Raises

	ValueError – If the positions do not correspond to outputs.

	
property inverse

	Returns the inverse of an invertible cell.

	Returns

	inverse – The inverse cell.

	Return type

	Diagram

	Raises

	ValueError – If the diagram is not an invertible cell.

	
property rinvertor

	Returns the right invertor for an invertible cell.

	Returns

	rinvertor – The right invertor.

	Return type

	Diagram

	Raises

	ValueError – If the diagram is not an invertible cell.

	
property linvertor

	Returns the left invertor for an invertible cell.

	Returns

	linvertor – The left invertor.

	Return type

	Diagram

	Raises

	ValueError – If the diagram is not an invertible cell.

	
property composite

	Returns the composite of the diagram, if it exists.

	Returns

	composite – The composite.

	Return type

	Diagram

	Raises

	ValueError – If the diagram does not have a composite.

	
property compositor

	Returns the compositor of the diagram, if it exists.

	Returns

	compositor – The compositor.

	Return type

	Diagram

	Raises

	ValueError – If the diagram does not have a composite.

	
generate_layering()

	Assigns a layering to the diagram, iterating through all
the layerings, and returns it.

	Returns

	layers – The generated layering.

	Return type

	list[Diagram]

	
hasse(**params)

	Bound version of hasse.draw().

Calling x.hasse(**params) is equivalent to calling
hasse.draw(x, **params).

	
draw(**params)

	Bound version of strdiags.draw().

Calling x.draw(**params) is equivalent to calling
strdiags.draw(x, **params).

	
draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

Calling x.draw_boundaries(**params) is equivalent to
calling strdiags.draw_boundaries(x, **params).

	
static yoneda(shapemap, name=None)

	Alternative constructor creating a diagram from
a shapes.ShapeMap.

Mathematically, diagrammatic sets are certain sheaves on the
category of shapes and maps of shapes; this constructor
implements the Yoneda embedding of a map of shapes.

	Parameters

	
	shapemap (shapes.Shape) – A map of shapes.

	name (hashable, optional) – The name of the generated diagram.

	Returns

	yoneda – The Yoneda-embedded map.

	Return type

	Diagram

	
static with_layers(fst, *layers)

	Given a non-zero number of diagrams that can be pasted sequentially
in the top dimension, returns their pasting.

	Parameters

	
	fst (Diagram) – The first diagram.

	*layers (Diagram) – Any number of additional diagrams.

	Returns

	with_layers – The pasting of all the diagrams in the top dimension.

	Return type

	Diagram

	Raises

	ValueError – If the diagrams are not pastable.

diagrams.SimplexDiagram

	
class rewalt.diagrams.SimplexDiagram(ambient)

	Bases: Diagram

Subclass of Diagram for diagrams whose shape is an
oriented simplex.

The methods of this class provide an implementation of the
structural maps of a simplicial set.

Methods

	simplex_degeneracy(k)

	Returns one of the degeneracies of the simplex.

	simplex_face(k)

	Returns one of the faces of the simplex.

	
simplex_face(k)

	Returns one of the faces of the simplex.

This is, by definition, the pullback of the diagram along
self.shape.simplex_face(k).

	Parameters

	k (int) – The index of the face, ranging from 0 to
self.dim.

	Returns

	simplex_face – The face.

	Return type

	Diagram

	Raises

	ValueError – If the index is out of range.

	
simplex_degeneracy(k)

	Returns one of the degeneracies of the simplex.

This is, by definition, the pullback of the diagram along
self.shape.simplex_degeneracy(k).

	Parameters

	k (int) – The index of the degeneracy, ranging from 0 to
self.dim.

	Returns

	simplex_degeneracy – The degeneracy.

	Return type

	Diagram

	Raises

	ValueError – If the index is out of range.

diagrams.CubeDiagram

	
class rewalt.diagrams.CubeDiagram(ambient)

	Bases: Diagram

Subclass of Diagram for diagrams whose shape is an
oriented cube.

The methods of this class provide an implementation of the
structural maps of a cubical set with connections.

Methods

	cube_connection(k, sign)

	Returns one of the connections of the cube.

	cube_degeneracy(k)

	Returns one of the degeneracies of the cube.

	cube_face(k, sign)

	Returns one of the faces of the cube.

	
cube_face(k, sign)

	Returns one of the faces of the cube.

This is, by definition, the pullback of the diagram along
self.shape.cube_face(k, sign).

	Parameters

	
	k (int) – Index of the face, ranging from 0 to
self.dim - 1.

	sign (str) – Side: '-' or '+'.

	Returns

	cube_face – The face.

	Return type

	Diagram

	Raises

	ValueError – If the index is out of range.

	
cube_degeneracy(k)

	Returns one of the degeneracies of the cube.

This is, by definition, the pullback of the diagram along
self.shape.cube_degeneracy(k).

	Parameters

	k (int) – The index of the degeneracy, ranging from 0 to
self.dim.

	Returns

	cube_degeneracy – The degeneracy.

	Return type

	Diagram

	Raises

	ValueError – If the index is out of range.

	
cube_connection(k, sign)

	Returns one of the connections of the cube.

This is, by definition, the pullback of the diagram along
self.shape.cube_connection(k, sign).

	Parameters

	
	k (int) – Index of the connection, ranging from 0 to
self.dim - 1.

	sign (str) – Side: '-' or '+'.

	Returns

	cube_face – The connection.

	Return type

	Diagram

	Raises

	ValueError – If the index is out of range.

diagrams.PointDiagram

	
class rewalt.diagrams.PointDiagram(ambient)

	Bases: SimplexDiagram, CubeDiagram

Subclass of Diagram for diagrams whose shape is a point.

Methods

	degeneracy(shape)

	Given a shape, returns the unique degenerate diagram of that shape over the point.

	
degeneracy(shape)

	Given a shape, returns the unique degenerate diagram
of that shape over the point.

This is, by definition, the pullback of the point diagram along
self.shape.terminal().

	Parameters

	shape (shapes.Shape) – The shape of the degenerate diagram.

	Returns

	degeneracy – The degenerate diagram.

	Return type

	Diagram

shapes

Implements shapes of cells and diagrams.

	rewalt.shapes.Shape()

	Inductive subclass of ogposets.OgPoset for shapes of cells and diagrams.

	rewalt.shapes.ShapeMap(ogmap, **params)

	An overlay of ogposets.OgMap for total maps between Shape objects.

	rewalt.shapes.Simplex()

	Subclass of Shape for oriented simplices.

	rewalt.shapes.Cube()

	Subclass of Shape for oriented cubes.

shapes.Shape

	
class rewalt.shapes.Shape

	Bases: OgPoset

Inductive subclass of ogposets.OgPoset for shapes of
cells and diagrams.

Properly formed objects of the class are unique encodings of the
regular molecules from the theory of diagrammatic sets (plus the
empty shape, which is not considered a regular molecule).

To create shapes, we start from basic constructors such as
empty(), point(), or one of the named shape constructors,
such as globe(), simplex(), cube().

Then we generate new shapes by gluing basic shapes together with
paste(), to_inputs(), to_outputs(), or by
producing new higher-dimensional shapes with operations such as
atom(), gray(), join().

When possible, the constructors place the shapes in appropriate
subclasses of separate interest, which include the globes,
the oriented simplices, the oriented cubes, and the
positive opetopes. This is to enable the specification of special
methods for subclasses of shapes.

The following diagram summarises the hierarchy of subclasses of
shapes:

 Simplex Cube OpetopeTree Theta
 | |\ |\ | | |
 | | \ | \ Opetope GlobeString
 | | \| \ | /
 | | \ \ Globe
 | | |\ \/ |
Empty | | \ /\ |
 | | \/ \ |
 | | /\ \ |
 | | / \ \ |
 | |/ \ \|
 Point Arrow

Currently only the Cube and Simplex classes have
special methods implemented.

Methods

	all_layerings()

	Returns an iterator on all layerings of a shape of dimension n into shapes with a single n-dimensional element, pasted along their (n-1)-dimensional boundary.

	arrow()

	Constructs the arrow, the unique 1-dimensional atomic shape.

	atom(fst, snd, **params)

	Given two shapes with identical round boundaries, returns a new atomic shape whose input boundary is the first one and output boundary the second one.

	atom_inclusion(element)

	Returns the inclusion of the closure of an element, which is an atomic shape, in the shape.

	boundary([sign, dim])

	Returns the inclusion of the boundary of a given orientation and dimension into the shape.

	cube([dim])

	Constructs the oriented cube of a given dimension.

	draw(**params)

	Bound version of strdiags.draw().

	draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

	dual(shape, *dims, **params)

	Returns the shape with orientations reversed in given dimensions.

	empty()

	Constructs the initial, empty shape.

	generate_layering()

	Assigns a layering to the shape, iterating through all the layerings, and returns it.

	globe([dim])

	Constructs the globe of a given dimension.

	gray(*shapes)

	Returns the Gray product of any number of shapes.

	id()

	Returns the identity map on the shape.

	inflate([collapsed])

	Given a closed subset of the boundary of the shape, forms a cylinder on the shape, with the sides incident to the closed subset collapsed, and returns its projection map onto the original shape.

	initial()

	Returns the unique map from the initial, empty shape.

	join(*shapes)

	Returns the join of any number of shapes.

	merge()

	Returns the unique atomic shape with the same boundary, if the shape is round.

	paste(fst, snd[, dim])

	Given two shapes and k such that the output k-boundary of the first is equal to the input k-boundary of the second, returns their pasting along the matching boundaries.

	paste_along(fst, snd, **params)

	Given a span of shape maps, where one is the inclusion of the input (resp output) k-boundary of a shape, and the other the inclusion of a round subshape of the output (resp input) k-boundary of another shape, returns the pasting (pushout) of the two shapes along the span.

	point()

	Constructs the terminal shape, consisting of a single point.

	simplex([dim])

	Constructs the oriented simplex of a given dimension.

	suspend(shape[, n])

	Returns the n-fold suspension of a shape.

	terminal()

	Returns the unique map to the point, the terminal shape.

	theta(*thetas)

	Inductive constructor for the objects of the Theta category, sometimes known as Batanin cells.

	to_inputs(positions, other[, dim])

	Returns the pasting of another shape along a round subshape of the input k-boundary, specified by the positions of its k-dimensional elements.

	to_outputs(positions, other[, dim])

	Returns the pasting of another shape along a round subshape of the output k-boundary, specified by the positions of its k-dimensional elements.

Attributes

	isatom

	Returns whether the shape is an atom (has a greatest element).

	isround

	Shorthand for all().isround.

	layers

	Returns the current layering of the shape.

	rewrite_steps

	Returns the sequence of rewrite steps associated to the current layering of the shape.

	
property isatom

	Returns whether the shape is an atom (has a greatest element).

	Returns

	isatom – True if and only if the shape has a greatest element.

	Return type

	bool

Examples

>>> arrow = Shape.arrow()
>>> assert arrow.isatom
>>> assert not arrow.paste(arrow).isatom

	
property isround

	Shorthand for all().isround.

	
property layers

	Returns the current layering of the shape.

	Returns

	layers – The current layering.

	Return type

	list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> cospan = globe.paste(arrow).paste(
... arrow.paste(globe), cospan=True)
>>> shape = cospan.target
>>> assert shape.layers == [cospan.fst, cospan.snd]

	
property rewrite_steps

	Returns the sequence of rewrite steps associated to the current
layering of the shape.

The 0-th rewrite step is the input boundary of the shape.
For n > 0, the n-th rewrite step is the output
boundary of the (n-1)-th layer.

	Returns

	rewrite_steps – The current sequence of rewrite steps.

	Return type

	list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> cospan = globe.paste(arrow).paste(
... arrow.paste(globe), cospan=True)
>>> shape = cospan.target
>>> assert shape.rewrite_steps == [
... cospan.fst.input,
... cospan.fst.output,
... cospan.snd.output]

	
static atom(fst, snd, **params)

	Given two shapes with identical round boundaries, returns a new
atomic shape whose input boundary is the first one and output
boundary the second one.

	Parameters

	
	fst (Shape) – The input boundary shape.

	snd (Shape) – The output boundary shape.

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the input and
output boundaries (default is False).

	Returns

	atom – The new atomic shape (optionally with the cospan of
inclusions of its boundaries).

	Return type

	Shape | ogposets.OgMapPair

	Raises

	ValueError – If the boundaries do not match, or are not round.

Examples

We create a 2-dimensional cell shape with two input 1-cells
and one output 2-cell.

>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> binary.draw(path='docs/_static/img/Shape_atom.png')

[image: ../_images/Shape_atom.png]

	
static paste(fst, snd, dim=None, **params)

	Given two shapes and k such that the output
k-boundary of the first is equal to the input
k-boundary of the second, returns their pasting along
the matching boundaries.

	Parameters

	
	fst (Shape) – The first shape.

	snd (Shape) – The second shape.

	dim (int, optional) – The dimension of the boundary along which they will be pasted
(default is min(fst.dim, snd.dim) - 1).

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the two shapes
into the pasting (default is False).

	Returns

	paste – The pasted shape (optionally with the cospan of
inclusions of its components).

	Return type

	Shape | ogposets.OgMapPair

	Raises

	ValueError – If the boundaries do not match.

Examples

We can paste two 2-dimensional globes either “vertically” along
their 1-dimensional boundary or “horizontally” along their
0-dimensional boundary.

>>> globe = Shape.globe(2)
>>> vert = globe.paste(globe)
>>> horiz = globe.paste(globe, 0)
>>> vert.draw(path='docs/_static/img/Shape_paste_vert.png')

[image: ../_images/Shape_paste_vert.png]
>>> horiz.draw(path='docs/_static/img/Shape_paste_horiz.png')

[image: ../_images/Shape_paste_horiz.png]
We can also check that the interchange equation holds.

>>> assert vert.paste(vert, 0) == horiz.paste(horiz)
>>> horiz.paste(horiz).draw(
... path='docs/_static/img/Shape_paste_interchange.png')

[image: ../_images/Shape_paste_interchange.png]

	
static paste_along(fst, snd, **params)

	Given a span of shape maps, where one is the inclusion of the
input (resp output) k-boundary of a shape,
and the other the inclusion of a round subshape of the
output (resp input) k-boundary of another shape,
returns the pasting (pushout) of the two shapes along the span.

In practice, it is convenient to use to_inputs() and
to_outputs() instead, where the data of the span is specified
by k and the positions of the k-dimensional
elements in the round subshape along which the pasting occurs.

	Parameters

	
	fst (ShapeMap) – The first inclusion.

	snd (ShapeMap) – The second inclusion.

	Keyword Arguments

	
	wfcheck (bool) – Check if the span gives rise to a well-formed pasting
(default is True).

	cospan (bool) – Whether to return the cospan of inclusions of the two shapes
into the pasting (default is False).

	Returns

	paste_along – The pasted shape (optionally with the cospan of
inclusions of its components).

	Return type

	Shape | ogposets.OgMapPair

	Raises

	ValueError – If the pair of maps is not an injective span.

	
to_outputs(positions, other, dim=None, **params)

	Returns the pasting of another shape along a round subshape of
the output k-boundary, specified by the positions of its
k-dimensional elements.

	Parameters

	
	positions (list[int] | int) – The positions of the outputs along which to paste. If given
an integer n, interprets it as the list [n].

	other (Shape) – The other shape to paste.

	dim (int, optional) – The dimension of the boundary along which to paste
(default is self.dim - 1)

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the two shapes
into the pasting (default is False).

	Returns

	to_outputs – The pasted shape (optionally with the cospan of
inclusions of its components).

	Return type

	Shape | ogposets.OgMapPair

	Raises

	ValueError – If the boundaries do not match, or the pasting does not produce
 a well-formed shape.

Examples

We create a 2-simplex and visualise it as a string diagram with the
positions parameter enabled.

>>> simplex = Shape.simplex(2)
>>> simplex.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs1.png')

[image: ../_images/Shape_to_outputs1.png]
We paste another 2-simplex to the output in position 2.

>>> paste1 = simplex.to_outputs(2, simplex)
>>> paste1.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs2.png')

[image: ../_images/Shape_to_outputs2.png]
Finally, we paste the dual of a 2-simplex to the outputs in
positions 2, 3.

>>> paste2 = paste1.to_outputs([1, 3], simplex.dual())
>>> paste2.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs3.png')

[image: ../_images/Shape_to_outputs3.png]

	
to_inputs(positions, other, dim=None, **params)

	Returns the pasting of another shape along a round subshape
of the input k-boundary, specified by the positions of its
k-dimensional elements.

	Parameters

	
	positions (list[int] | int) – The positions of the inputs along which to paste. If given
an integer n, interprets it as the list [n].

	other (Shape) – The other shape to paste.

	dim (int, optional) – The dimension of the boundary along which to paste
(default is self.dim - 1)

	Keyword Arguments

	cospan (bool) – Whether to return the cospan of inclusions of the two shapes
into the pasting (default is False).

	Returns

	to_inputs – The pasted shape (optionally with the cospan of
inclusions of its components).

	Return type

	Shape | ogposets.OgMapPair

	Raises

	ValueError – If the boundaries do not match, or the pasting does not produce
 a well-formed shape.

Examples

We work dually to the example for to_outputs().

>>> binary = Shape.simplex(2).dual()
>>> binary.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs1.png')

[image: ../_images/Shape_to_inputs1.png]
>>> paste1 = binary.to_inputs(1, binary)
>>> paste1.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs2.png')

[image: ../_images/Shape_to_inputs2.png]
>>> paste2 = paste1.to_inputs([0, 1], binary.dual())
>>> paste2.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs3.png')

[image: ../_images/Shape_to_inputs3.png]

	
static suspend(shape, n=1)

	Returns the n-fold suspension of a shape.

This static method can be also used as a bound method after
an object is initialised, that is, shape.suspend(n) is
equivalent to suspend(shape, n).

	Parameters

	
	shape (Shape) – The object to suspend.

	n (int, optional) – The number of iterations of the suspension (default is 1).

	Returns

	suspension – The suspended shape.

	Return type

	Shape

Examples

The suspension of the point is the arrow, and the suspension of
an arrow is the 2-globe.

>>> assert Shape.point().suspend() == Shape.arrow()
>>> assert Shape.arrow().suspend() == Shape.globe(2)

In general, the suspension of the n-globe is the (n+1)-globe.

	
static gray(*shapes)

	Returns the Gray product of any number of shapes.

This method can be called with the math operator *, that is,
fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method after an object
is initialised, that is, fst.gray(*shapes) is equivalent to
gray(fst, *shapes).

	Parameters

	*shapes (Shape) – Any number of shapes.

	Returns

	gray – The Gray product of the arguments.

	Return type

	Shape

Example

The point is a unit for the Gray product.

>>> point = Shape.point()
>>> arrow = Shape.arrow()
>>> assert point*arrow == arrow*point == arrow

The Gray product of two arrows is the oriented square (2-cube).

>>> arrow = Shape.arrow()
>>> assert arrow*arrow == Shape.cube(2)

In general, the Gray product of the n-cube with the k-cube
is the (n+k)-cube.

	
static join(*shapes)

	Returns the join of any number of shapes.

This method can be called with the shift operators >>
and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to
join(snd, fst).

This static method can also be used as a bound method after an
object is initialised, that is, fst.join(*shapes) is
equivalent to join(fst, *shapes).

	Parameters

	*shapes (Shape) – Any number of shapes.

	Returns

	join – The join of the arguments.

	Return type

	Shape

Examples

The empty shape is a unit for the join.

>>> empty = Shape.empty()
>>> point = Shape.point()
>>> assert empty >> point == point >> empty == point

The join of two points is the arrow, and the join of an arrow
and a point is the 2-simplex.

>>> arrow = Shape.arrow()
>>> assert point >> point == Shape.arrow()
>>> assert arrow >> point == Shape.simplex(2)

In general, the join of an n-simplex with a k-simplex is
the (n+k+1)-simplex.

	
static dual(shape, *dims, **params)

	Returns the shape with orientations reversed in given dimensions.

The dual in all dimensions can also be called with the bit negation
operator ~, that is, ~shape is equivalent to
shape.dual().

This static method can be also used as a bound method after an object
is initialised, that is, shape.dual(*dims) is equivalent to
dual(shape, *dims).

	Parameters

	
	shape (Shape) – A shape.

	*dims (int) – Any number of dimensions; if none, defaults to all dimensions.

	Returns

	dual – The shape, dualised in the given dimensions.

	Return type

	Shape

Examples

>>> arrow = Shape.arrow()
>>> simplex = Shape.simplex(2)
>>> binary = arrow.paste(arrow).atom(arrow)
>>> assert binary == simplex.dual()

>>> assoc_l = binary.to_inputs(0, binary)
>>> assoc_r = binary.to_inputs(1, binary)
>>> assert assoc_r == assoc_l.dual(1)

	
merge()

	Returns the unique atomic shape with the same boundary,
if the shape is round.

	Returns

	merge – The unique atomic shape with the same boundary.

	Return type

	Shape

	Raises

	ValueError – If the shape is not round.

Examples

We create a 2-dimensional shape with two input 1-cells and
one output 1-cell, and paste it to itself along one of the
inputs.

>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> to_merge = binary.to_inputs(1, binary)
>>> to_merge.draw(path='docs/_static/img/Shape_merge1.png')

[image: ../_images/Shape_merge1.png]
The “merged” shape is the 2-dimensional atom with three input
2-cells and one output 1-cell.

>>> merged = to_merge.merge()
>>> merged.draw(path='docs/_static/img/Shape_merge2.png')

[image: ../_images/Shape_merge2.png]

	
static empty()

	Constructs the initial, empty shape.

	Returns

	empty – The empty shape.

	Return type

	Empty

	
static point()

	Constructs the terminal shape, consisting of a single point.

	Returns

	point – The point.

	Return type

	Point

	
static arrow()

	Constructs the arrow, the unique 1-dimensional atomic shape.

	Returns

	arrow – The arrow.

	Return type

	Arrow

	
static simplex(dim=-1)

	Constructs the oriented simplex of a given dimension.

	Parameters

	dim (int) – The dimension of the simplex (default is -1).

	Returns

	simplex – The simplex of the requested dimension.

	Return type

	Simplex

	
static cube(dim=0)

	Constructs the oriented cube of a given dimension.

	Parameters

	dim (int) – The dimension of the cube (default is 0).

	Returns

	cube – The cube of the requested dimension.

	Return type

	Cube

	
static globe(dim=0)

	Constructs the globe of a given dimension.

	Parameters

	dim (int) – The dimension of the globe (default is 0).

	Returns

	globe – The globe of the requested dimension.

	Return type

	Globe

	
static theta(*thetas)

	Inductive constructor for the objects of the Theta category,
sometimes known as Batanin cells.

Batanin cells are in 1-to-1 correspondence with finite plane trees.
The constructor is based on this correspondence, using the
well-known inductive definition of plane trees: given any number
k of Batanin cells, it returns the Batanin cell encoded by
a root with k children, to which the k plane trees
encoding the arguments are attached.

	Parameters

	thetas (Theta) – Any number of Batanin cells.

	Returns

	theta – The resulting Batanin cell.

	Return type

	Theta

Examples

Every globe is a Batanin cell, encoded by the linear tree of length
equal to its dimension.

>>> assert Shape.theta() == Shape.globe(0)
>>> assert Shape.theta(Shape.theta()) == Shape.globe(1)
>>> assert Shape.theta(Shape.theta(Shape.theta())) == Shape.globe(2)

The tree with one root with n children corresponds to a string
of n arrows.

>>> point = Shape.theta()
>>> arrow = Shape.arrow()
>>> assert Shape.theta(point, point) == arrow.paste(arrow)

	
id()

	Returns the identity map on the shape.

	Returns

	id – The identity map on the object.

	Return type

	ShapeMap

	
boundary(sign=None, dim=None)

	Returns the inclusion of the boundary of a given orientation
and dimension into the shape.

Note that input and output boundaries of shapes are shapes,
so they are returned as shape maps; however, the entire (input
+ output) boundary of a shape is not a shape, so it is returned
simply as a map of oriented graded posets.

	Parameters

	
	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary – The inclusion of the requested boundary into the object.

	Return type

	ShapeMap | OgMap

Examples

>>> point = Shape.point()
>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> assert binary.boundary('-').source == arrow.paste(arrow)
>>> assert binary.boundary('+').source == arrow
>>> assert binary.boundary('-', 0).source == point
>>> assert binary.boundary('-').target == binary

	
atom_inclusion(element)

	Returns the inclusion of the closure of an element, which
is an atomic shape, in the shape.

	Parameters

	element (El) – An element of the shape.

	Returns

	atom_inclusion – The inclusion of the closure of the element.

	Return type

	ShapeMap

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> whisker_l = arrow.paste(globe)
>>> assert whisker_l.atom_inclusion(El(2, 0)).source == globe

	
initial()

	Returns the unique map from the initial, empty shape.

	Returns

	initial – The unique map from the empty shape.

	Return type

	ShapeMap

Examples

>>> point = Shape.point()
>>> empty = Shape.empty()
>>> assert point.initial() == empty.terminal()
>>> assert empty.initial() == empty.id()

	
terminal()

	Returns the unique map to the point, the terminal shape.

	Returns

	terminal – The unique map to the point.

	Return type

	ShapeMap

Examples

>>> point = Shape.point()
>>> assert point.terminal() == point.id()

	
inflate(collapsed=None)

	Given a closed subset of the boundary of the shape, forms a
cylinder on the shape, with the sides incident to the closed subset
collapsed, and returns its projection map onto the original shape.

This is mainly used in constructing units and unitors on diagrams;
see diagrams.Diagram.unit(), diagrams.Diagram.lunitor(),
diagrams.Diagram.runitor().

	Parameters

	collapsed (Closed, optional) – A closed subset of the boundary of the shape (default is
the entire boundary).

	Returns

	inflate – The projection map of the “partially collapsed cylinder” onto
the shape.

	Return type

	Closed

	Raises

	ValueError – If collapsed is not a subset of the boundary.

	
all_layerings()

	Returns an iterator on all layerings of a shape of dimension
n into shapes with a single n-dimensional element,
pasted along their (n-1)-dimensional boundary.

	Returns

	all_layerings – The iterator on all layerings of the shape.

	Return type

	Iterable

	
generate_layering()

	Assigns a layering to the shape, iterating through all
the layerings, and returns it.

	Returns

	layers – The generated layering.

	Return type

	list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> chain = globe.paste(globe, 0)
>>> chain.generate_layering()
>>> assert chain.layers[0].source == arrow.paste(globe)
>>> assert chain.layers[1].source == globe.paste(arrow)
>>> chain.generate_layering()
>>> assert chain.layers[0].source == globe.paste(arrow)
>>> assert chain.layers[1].source == arrow.paste(globe)

	
draw(**params)

	Bound version of strdiags.draw().

Calling x.draw(**params) is equivalent to calling
strdiags.draw(x, **params).

	
draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

Calling x.draw_boundaries(**params) is equivalent to
calling strdiags.draw_boundaries(x, **params).

shapes.ShapeMap

	
class rewalt.shapes.ShapeMap(ogmap, **params)

	Bases: OgMap

An overlay of ogposets.OgMap for total maps between
Shape objects.

It is used to extend constructions of shapes functorially to their
maps, in a way that is compatible with the unique representation
of shapes by their underlying ogposets.OgPoset objects.

The most common ShapeMap objects are created by methods of
Shape such as Shape.boundary() and Shape.inflate(),
or of its subclasses, such as Simplex.simplex_degeneracy() or
Cube.cube_connection().

Nevertheless, occasionally we may need to define a map explicitly,
in which case we first define an object f of class
ogposets.OgMap, then upgrade it to a ShapeMap
with the constructor ShapeMap(f).

	Parameters

	ogmap (ogposets.OgMap) – A total map between shapes.

	Keyword Arguments

	wfcheck (bool) – Check whether the given map is a total map between shapes
(default is True).

Methods

	draw(**params)

	Bound version of strdiags.draw().

	draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

	dual(*dims)

	Functorial extension of OgPoset.dual() to maps of oriented graded posets.

	generate_layering()

	Shorthand for source.generate_layering().

	gray(*maps)

	Functorial extension of OgPoset.gray() to maps of oriented graded posets.

	join(*maps)

	Functorial extension of OgPoset.join() to maps of oriented graded posets.

	then(other, *others)

	Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

Attributes

	layers

	Returns the current layering of the map's source, composed with the map.

	rewrite_steps

	Returns the sequence of rewrite steps associated to the current layering of the map's source, composed with the map.

	
then(other, *others)

	Returns the composite with other maps or pairs of maps of
oriented graded posets, when defined.

If given an OgMapPair as argument, it returns
the pair of composites of the map with each map in the pair.

	Parameters

	
	other (OgMap | OgMapPair) – The first map or pair of maps to follow.

	*others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to follow.

	Returns

	composite – The composite with all the other arguments.

	Return type

	OgMap | OgMapPair

Notes

If all the maps have type shapes.ShapeMap, their
composite has the same type.

	
property layers

	Returns the current layering of the map’s source, composed
with the map.

	Returns

	layers – The source’s current layering, composed with the map.

	Return type

	list[ShapeMap]

	
property rewrite_steps

	Returns the sequence of rewrite steps associated to the current
layering of the map’s source, composed with the map.

	Returns

	rewrite_steps – The source’s current sequence of rewrite steps, composed
with the map.

	Return type

	list[ShapeMap]

	
static gray(*maps)

	Functorial extension of OgPoset.gray() to maps of oriented
graded posets.

This method can be called with the math operator *, that is,
fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method, that is,
fst.gray(*maps) is equivalent to gray(fst, *maps).

	Parameters

	*maps (OgMap) – Any number of maps of oriented graded posets.

	Returns

	gray – The Gray product of the arguments.

	Return type

	OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their
Gray product.

	
static join(*maps)

	Functorial extension of OgPoset.join() to maps of oriented
graded posets.

This method can be called with the shift operators >>
and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to
join(snd, fst).

This static method can also be used as a bound method, that is,
fst.join(*maps) is equivalent to join(fst, *maps).

	Parameters

	*maps (OgMap) – Any number of maps of oriented graded posets.

	Returns

	join – The join of the arguments.

	Return type

	OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their
join.

	
dual(*dims)

	Functorial extension of OgPoset.dual() to maps of oriented
graded posets.

The dual in all dimensions can also be called with the negation
operator ~, that is, ~ogmap is equivalent to
ogmap.dual().

This static method can be also used as a bound method, that is,
self.dual(*dims) is equivalent to dual(self, *dims).

	Parameters

	
	ogmap (OgMap) – A map of oriented graded posets.

	*dims (int) – Any number of dimensions; if none, defaults to all dimensions.

	Returns

	dual – The map dualised in the given dimensions.

	Return type

	OgMap

Notes

If the map is a ShapeMap, so is its dual.

	
generate_layering()

	Shorthand for source.generate_layering().

	
draw(**params)

	Bound version of strdiags.draw().

Calling f.draw(**params) is equivalent to calling
strdiags.draw(f, **params).

	
draw_boundaries(**params)

	Bound version of strdiags.draw_boundaries().

Calling f.draw_boundaries(**params) is equivalent to calling
strdiags.draw_boundaries(f, **params).

shapes.Simplex

	
class rewalt.shapes.Simplex

	Bases: Shape

Subclass of Shape for oriented simplices.

The methods of this class provide a full implementation of the
category of simplices, which is generated by the face and
degeneracy maps between simplices one dimension apart.

Use Shape.simplex() to construct.

Examples

We create a 1-simplex (arrow), a 2-simplex (triangle),
and a 3-simplex (tetrahedron).

>>> arrow = Shape.simplex(1)
>>> triangle = Shape.simplex(2)
>>> tetra = Shape.simplex(3)

We can then check some of the simplicial relations between
degeneracy and face maps.

>>> map1 = triangle.simplex_degeneracy(2).then(
... arrow.simplex_degeneracy(1))
>>> map2 = triangle.simplex_degeneracy(1).then(
... arrow.simplex_degeneracy(1))
>>> assert map1 == map2

>>> map3 = tetra.simplex_face(2).then(
... triangle.simplex_degeneracy(2))
>>> assert map3 == triangle.id()

>>> map4 = tetra.simplex_face(0).then(
... triangle.simplex_degeneracy(2))
>>> map5 = arrow.simplex_degeneracy(1).then(
... triangle.simplex_face(0))
>>> assert map4 == map5

Methods

	simplex_degeneracy(k)

	Returns one of the collapse (degeneracy) maps of the simplex one dimension higher.

	simplex_face(k)

	Returns one of the face inclusion maps of the simplex.

	
simplex_face(k)

	Returns one of the face inclusion maps of the simplex.

	Parameters

	k (int) – The index of the face map, ranging from 0 to
self.dim.

	Returns

	simplex_face – The face map.

	Return type

	ShapeMap

	Raises

	ValueError – If the index is out of range.

	
simplex_degeneracy(k)

	Returns one of the collapse (degeneracy) maps of the simplex
one dimension higher.

	Parameters

	k (int) – The index of the degeneracy map, ranging from 0 to
self.dim.

	Returns

	simplex_degeneracy – The degeneracy map.

	Return type

	ShapeMap

	Raises

	ValueError – If the index is out of range.

shapes.Cube

	
class rewalt.shapes.Cube

	Bases: Shape

Subclass of Shape for oriented cubes.

The methods of this class provide a full implementation of the
category of cubes with connections, which is generated by the
face, degeneracy, and connection maps between cubes one
dimension apart.

Use Shape.cube() to construct.

Examples

We create a 1-cube (arrow), 2-cube (square), and 3-cube (cube).

>>> arrow = Shape.cube(1)
>>> square = Shape.cube(2)
>>> cube = Shape.cube(3)

We can then check some of the relations between cubical face,
connection, and degeneracy maps.

>>> map1 = square.cube_degeneracy(2).then(
... arrow.cube_degeneracy(1))
>>> map2 = square.cube_degeneracy(1).then(
... arrow.cube_degeneracy(1))
>>> assert map1 == map2

>>> map3 = square.cube_face(0, '+').then(
... cube.cube_face(2, '-'))
>>> map4 = square.cube_face(1, '-').then(
... cube.cube_face(0, '+'))
>>> assert map3 == map4

>>> map5 = square.cube_connection(1, '-').then(
... arrow.cube_connection(0, '-'))
>>> map6 = square.cube_connection(0, '-').then(
... arrow.cube_connection(0, '-'))
>>> assert map5 == map6

Methods

	cube_connection(k, sign)

	Returns one of the "connection" collapse maps of the cube one dimension higher.

	cube_degeneracy(k)

	Returns one of the "degeneracy" collapse maps of the cube one dimension higher.

	cube_face(k, sign)

	Returns one of the face inclusion maps of the cube.

	
cube_face(k, sign)

	Returns one of the face inclusion maps of the cube.

	Parameters

	
	k (int) – Index of the face map, ranging from 0 to
self.dim - 1.

	sign (str) – Side: '-' or '+'.

	Returns

	cube_face – The face map.

	Return type

	ShapeMap

	Raises

	ValueError – If the index is out of range.

	
cube_degeneracy(k)

	Returns one of the “degeneracy” collapse maps of the cube
one dimension higher.

	Parameters

	k (int) – The index of the degeneracy map, ranging from 0 to
self.dim.

	Returns

	cube_degeneracy – The degeneracy map.

	Return type

	ShapeMap

	Raises

	ValueError – If the index is out of range.

	
cube_connection(k, sign)

	Returns one of the “connection” collapse maps of the cube
one dimension higher.

	Parameters

	
	k (int) – Index of the connection map, ranging from 0 to
self.dim - 1.

	sign (str) – Side: '-' or '+'.

	Returns

	cube_face – The connection map.

	Return type

	ShapeMap

	Raises

	ValueError – If the index is out of range.

ogposets

Implements oriented graded posets, their elements, subsets, and maps.

	rewalt.ogposets.OgPoset(face_data, ...)

	Class for oriented graded posets, that is, finite graded posets with an orientation, defined as a {'-', '+'}-labelling of the edges of their Hasse diagram.

	rewalt.ogposets.OgMap(source, target[, mapping])

	Class for (partial) maps of oriented graded posets, compatible with boundaries.

	rewalt.ogposets.El(dim, pos)

	Class for elements of an oriented graded poset.

	rewalt.ogposets.GrSet(*elements)

	Class for sets of elements of an oriented graded poset, graded by their dimension.

	rewalt.ogposets.GrSubset(support, ambient, ...)

	Class for graded subsets, that is, pairs of a GrSet and an "ambient" OgPoset, where the first is seen as a subset of the second.

	rewalt.ogposets.Closed(support, ambient, ...)

	Subclass of GrSubset for (downwards) closed subsets.

	rewalt.ogposets.OgMapPair(fst, snd)

	Class for pairs of maps of oriented graded posets.

ogposets.OgPoset

	
class rewalt.ogposets.OgPoset(face_data, coface_data, **params)

	Bases: object

Class for oriented graded posets, that is, finite graded posets
with an orientation, defined as a {'-', '+'}-labelling of the
edges of their Hasse diagram.

In this implementation, the elements of a given dimension (grade)
are linearly ordered, so that each element is identified by its
dimension and the position in the linear order, encoded as an object
of class El.

If El(n, k) covers El(n-1, j) with orientation
o, we say that El(n-1, j) is an input face of
El(n, k) if o == '-' and an output face of
El(n, k) if o == '+'.

Defining an OgPoset directly is not recommended; use
constructors of shapes.Shape instead.

	Parameters

	
	face_data (list[list[dict[set[int]]]]) – Data encoding the oriented graded poset as follows:
j in face_data[n][k][o] if and only if
El(n, k) covers El(n-1, j) with orientation
o, where o == '-' or o == '+'.

	coface_data (list[list[dict[set[int]]]]) – Data encoding the oriented graded poset as follows:
j in coface_data[n][k][o] if and only if
El(n+1, j) covers El(n, k) with orientation
o, where o == '-' or o == '+'.

	Keyword Arguments

	
	wfcheck (bool) – Check that the data is well-formed (default is True)

	matchcheck (bool) – Check that face_data and coface_data match
(default is True)

Notes

Each of face_data, coface_data determines the other uniquely.
There is an alternative constructor from_face_data() that computes
coface_data from face_data.

Examples

Let us construct explicitly the “oriented face poset” of an arrow, or
directed edge.

>>> face_data = [
... [
... {'-': set(), '+': set()},
... {'-': set(), '+': set()},
...], [
... {'-': {0}, '+': {1}}
...]]
>>> coface_data = [
... [
... {'-': {0}, '+': set()},
... {'-': set(), '+': {0}},
...], [
... {'-': set(), '+': set()}
...]]
>>> arrow = OgPoset(face_data, coface_data)

This has two 0-dimensional elements and one 1-dimensional element.

>>> arrow.size
[2, 1]

We can visualise its Hasse diagram, with orientation conveyed by colour
(magenta for input, blue for output) and direction of arrows.

>>> arrow.hasse(path='docs/_static/img/OgPoset_arrow.png')

[image: ../_images/OgPoset_arrow.png]
We can ask for the faces and cofaces of a specific element.

>>> arrow.faces(El(1, 0), '-')
GrSet(El(0, 0))
>>> arrow.cofaces(El(0, 1))
GrSet(El(1, 0))

We can construct other oriented graded posets using various operations,
such as suspensions, Gray products, joins, or duals.

>>> print(arrow.suspend())
OgPoset with [2, 2, 1] elements
>>> print(arrow * arrow)
OgPoset with [4, 4, 1] elements
>>> print(arrow >> arrow)
OgPoset with [4, 6, 4, 1] elements
>>> print(arrow.dual())
OgPoset with [2, 1] elements

Methods

	all()

	Returns the closed subset of all elements.

	bot()

	Returns the object augmented with a bottom element, covered with orientation '+'.

	boundary([sign, dim])

	Returns the inclusion of the boundary of a given orientation and dimension into the object.

	co()

	Returns the dual() in all even dimensions.

	cofaces(element[, sign])

	Returns the cofaces of an element as a graded set.

	coproduct(fst, snd)

	Returns the coproduct cospan of two oriented graded posets.

	disjoint_union(fst, snd)

	Returns the disjoint union of two oriented graded posets, that is, the target of their coproduct cospan.

	dual(ogp, *dims)

	Returns an oriented graded poset with orientations reversed in given dimensions.

	empty()

	Returns the initial oriented graded poset, with no elements.

	faces(element[, sign])

	Returns the faces of an element as a graded set.

	from_face_data(face_data, **params)

	Alternative constructor computing coface_data from face_data.

	gray(*ogps)

	Returns the Gray product of any number of oriented graded posets.

	hasse(**params)

	Bound version of hasse.draw().

	id()

	Returns the identity map on the object.

	image(ogmap)

	Returns the image of the object through a map.

	join(*ogps)

	Returns the join of any number of oriented graded posets.

	maximal()

	Returns the subset of maximal elements, that is, those that are not covered by any elements.

	none()

	Returns the empty closed subset.

	op()

	Returns the dual() in all odd dimensions.

	point()

	Returns the terminal oriented graded poset, with a single element.

	suspend(ogp[, n])

	Returns the n-fold suspension of an oriented graded poset.

	underset(*elements)

	Returns the closure of a set of elements in the object.

Attributes

	as_chain

	Returns a "chain complex" representation of the face data.

	coface_data

	Returns the coface data as given to the object constructor.

	dim

	Returns the dimension of the object, that is, the maximum of the dimensions of its elements.

	face_data

	Returns the face data as given to the object constructor.

	input

	Alias for boundary('-').

	output

	Alias for boundary('+').

	size

	Returns the number of elements in each dimension as a list.

	
property face_data

	Returns the face data as given to the object constructor.

An OgPoset is meant to be immutable; create a new
object if you need to modify the face data.

	Returns

	face_data – The face data as given to the object constructor.

	Return type

	list[list[dict[set[int]]]]

	
property coface_data

	Returns the coface data as given to the object constructor.

An OgPoset is meant to be immutable; create a new
object if you need to modify the coface data.

	Returns

	coface_data – The coface data as given to the object constructor.

	Return type

	list[list[dict[set[int]]]]

	
property size

	Returns the number of elements in each dimension as a list.

	Returns

	size – The k th entry is the number of
k -dimensional elements.

	Return type

	list[int]

	
property dim

	Returns the dimension of the object, that is, the maximum of
the dimensions of its elements.

	Returns

	dim – The dimension of the object.

	Return type

	int

	
property as_chain

	Returns a “chain complex” representation of the face data.

	Returns

	chain – Encodes the face data as follows:
chain[n][i][j] == 1 if
El(n, i) is an output face of El(n+1, j),
-1 if it is an input face, 0 otherwise.

	Return type

	list[numpy.array]

	
all()

	Returns the closed subset of all elements.

	Returns

	all – The closed subset of all elements of the object.

	Return type

	Closed

	
none()

	Returns the empty closed subset.

	Returns

	none – The closed subset with no elements.

	Return type

	Closed

	
underset(*elements)

	Returns the closure of a set of elements in the object.

	Parameters

	elements (El) – Any number of elements.

	Returns

	underset – The downwards closure of the given elements.

	Return type

	Closed

	
maximal()

	Returns the subset of maximal elements, that is, those
that are not covered by any elements.

	Returns

	maximal – The subset of maximal elements.

	Return type

	GrSubset

	
faces(element, sign=None)

	Returns the faces of an element as a graded set.

	Parameters

	
	element (El) – An element of the object.

	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	Returns

	faces – The set of faces of the given element.

	Return type

	GrSet

	
cofaces(element, sign=None)

	Returns the cofaces of an element as a graded set.

	Parameters

	
	element (El) – An element of the object.

	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	Returns

	cofaces – The set of cofaces of the given element.

	Return type

	GrSet

	
id()

	Returns the identity map on the object.

	Returns

	id – The identity map on the object.

	Return type

	OgMap

	
image(ogmap)

	Returns the image of the object through a map.

	Parameters

	ogmap (OgMap) – A map from the object to another OgPoset.

	Returns

	image – The image of the object through the given map.

	Return type

	Closed

	
boundary(sign=None, dim=None)

	Returns the inclusion of the boundary of a given orientation
and dimension into the object.

	Parameters

	
	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary – The inclusion of the requested boundary into the object.

	Return type

	OgMap

	
property input

	Alias for boundary('-').

	
property output

	Alias for boundary('+').

	
classmethod from_face_data(face_data, **params)

	Alternative constructor computing coface_data from face_data.

	Parameters

	face_data (list[list[dict[set[int]]]]) – As in the main constructor.

	Keyword Arguments

	wfcheck (bool) – Check that the data is well-formed (default is True).

	
static empty()

	Returns the initial oriented graded poset, with no elements.

	Returns

	empty – The empty oriented graded poset.

	Return type

	OgPoset

	
static point()

	Returns the terminal oriented graded poset, with a single element.

	Returns

	point – The oriented graded poset with a single element.

	Return type

	OgPoset

	
static coproduct(fst, snd)

	Returns the coproduct cospan of two oriented graded posets.

	Parameters

	
	fst (OgPoset) – The first factor of the coproduct.

	snd (OgPoset) – The second factor of the coproduct.

	Returns

	coproduct – The coproduct cospan.

	Return type

	OgMapPair

	
static disjoint_union(fst, snd)

	Returns the disjoint union of two oriented graded posets, that is,
the target of their coproduct cospan.

This method can be called with the math operator +, that is,
fst + snd is equivalent to disjoint_union(fst, snd).

	Parameters

	
	fst (OgPoset) – The first factor of the disjoint union.

	snd (OgPoset) – The second factor of the disjoint union.

	Returns

	disjoint_union – The disjoint union of the two.

	Return type

	OgPoset

	
static suspend(ogp, n=1)

	Returns the n-fold suspension of an oriented graded poset.

This static method can be also used as a bound method after
an object is initialised, that is, ogp.suspend(n) is
equivalent to suspend(ogp, n).

	Parameters

	
	ogp (OgPoset) – The object to suspend.

	n (int, optional) – The number of iterations of the suspension (default is 1).

	Returns

	suspension – The suspended object.

	Return type

	OgPoset

	
static gray(*ogps)

	Returns the Gray product of any number of oriented graded posets.

This method can be called with the math operator *, that is,
fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method after an object
is initialised, that is, fst.gray(*ogps) is equivalent to
gray(fst, *ogps).

	Parameters

	*ogps (OgPoset) – Any number of oriented graded posets.

	Returns

	gray – The Gray product of the arguments.

	Return type

	OgPoset

	
bot()

	Returns the object augmented with a bottom element, covered
with orientation '+'.

	Returns

	bot – The object augmented with a bottom element.

	Return type

	OgPoset

	
static join(*ogps)

	Returns the join of any number of oriented graded posets.

This method can be called with the shift operators >>
and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to
join(snd, fst).

This static method can also be used as a bound method after an
object is initialised, that is, fst.join(*ogps) is
equivalent to join(fst, *ogps).

	Parameters

	*ogps (OgPoset) – Any number of oriented graded posets.

	Returns

	join – The join of the arguments.

	Return type

	OgPoset

	
static dual(ogp, *dims)

	Returns an oriented graded poset with orientations reversed
in given dimensions.

The dual in all dimensions can also be called with the bit negation
operator ~, that is, ~ogp is equivalent to
ogp.dual().

This static method can be also used as a bound method after an object
is initialised, that is, ogp.dual(*dims) is equivalent to
dual(ogp, *dims).

	Parameters

	
	ogp (OgPoset) – An oriented graded poset.

	*dims (int) – Any number of dimensions; if none, defaults to all dimensions.

	Returns

	dual – The oriented graded poset, dualised in the given dimensions.

	Return type

	OgPoset

	
op()

	Returns the dual() in all odd dimensions.

	
co()

	Returns the dual() in all even dimensions.

	
hasse(**params)

	Bound version of hasse.draw().

Calling x.hasse(**params) is equivalent to calling
hasse.draw(x, **params).

ogposets.OgMap

	
class rewalt.ogposets.OgMap(source, target, mapping=None, **params)

	Bases: object

Class for (partial) maps of oriented graded posets, compatible with
boundaries.

To define a map on one element, it must have been defined on all
elements below it. The assignment can be made all at once, or element
by element. Once the map has been defined on an element, the assignment
cannot be modified.

	Parameters

	
	source (OgPoset) – The source (domain) of the map.

	target (OgPoset) – The target (codomain) of the map.

	mapping (list[list[El]], optional) – Data specifying the partial map as follows:
mapping[n][k] == El(m, j) if the map sends El(n, k)
to El(m, j), and None if the map is undefined
on El(n, k) (default is the nowhere defined map).

	Keyword Arguments

	wfcheck (bool) – Check whether the data defines a well-formed map compatible with
all boundaries (default is True).

Notes

Objects of the class are callable on objects of type El
(returning the image of an element) and of type GrSubset and
GrSet (returning the image of a subset of their source).

Examples

Let us create two simple oriented graded posets, the “point” and the
“arrow”.

>>> point = OgPoset.point()
>>> arrow = point >> point

We define the map that collapses the arrow onto the point. First we
create a nowhere defined map.

>>> collapse = OgMap(arrow, point)
>>> assert not collapse.istotal

We declare the assignment first on the 0-dimensional elements, then on
the single 1-dimensional element. Trying to do otherwise results in
a ValueError.

>>> collapse[El(0, 0)] = El(0, 0)
>>> collapse[El(0, 1)] = El(0, 0)
>>> collapse[El(1, 0)] = El(0, 0)

We can check various properties of the map.

>>> assert collapse.istotal
>>> assert collapse.issurjective
>>> assert not collapse.isinjective

Alternatively, we could have defined the map all at once, as follows.

>>> mapping = [[El(0, 0), El(0, 0)], [El(0, 0)]]
>>> assert collapse == OgMap(arrow, point, mapping)

Methods

	bot()

	Functorial extension of OgPoset.bot() to maps.

	boundary([sign, dim])

	Returns the map restricted to a specified boundary of its source.

	co()

	Returns the dual in all even dimensions.

	dual(ogmap, *dims)

	Functorial extension of OgPoset.dual() to maps of oriented graded posets.

	gray(*maps)

	Functorial extension of OgPoset.gray() to maps of oriented graded posets.

	hasse(**params)

	Bound version of hasse.draw().

	image()

	Returns the image of the map.

	inv()

	Returns the inverse of the map if it is an isomorphism.

	isdefined(element)

	Returns whether the map is defined on a given element.

	join(*maps)

	Functorial extension of OgPoset.join() to maps of oriented graded posets.

	op()

	Returns the dual in all odd dimensions.

	then(other, *others)

	Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

Attributes

	input

	Alias for boundary('-').

	isinjective

	Returns whether the map is injective.

	isiso

	Returns whether the map is an isomorphism, that is, total, injective, and surjective.

	issurjective

	Returns whether the map is surjective.

	istotal

	Returns whether the map is total.

	mapping

	Returns the data specifying the map's assignments.

	output

	Alias for boundary('+').

	source

	Returns the source (domain) of the map.

	target

	Returns the target (codomain) of the map.

	
property source

	Returns the source (domain) of the map.

	Returns

	source – The source of the map.

	Return type

	OgPoset

	
property target

	Returns the target (codomain) of the map.

	Returns

	target – The target of the map.

	Return type

	OgPoset

	
property mapping

	Returns the data specifying the map’s assignments.

	Returns

	mapping – The mapping data.

	Return type

	list[list[El]]

	
property istotal

	Returns whether the map is total.

	Returns

	istotal – True if and only if the map is total.

	Return type

	bool

	
property isinjective

	Returns whether the map is injective.

	Returns

	isinjective – True if and only if the map is injective.

	Return type

	bool

	
property issurjective

	Returns whether the map is surjective.

	Returns

	issurjective – True if and only if the map is surjective.

	Return type

	bool

	
property isiso

	Returns whether the map is an isomorphism, that is, total,
injective, and surjective.

	Returns

	isiso – True if and only if the map is an isomorphism.

	Return type

	bool

	
isdefined(element)

	Returns whether the map is defined on a given element.

	Parameters

	element (El) – The element to check.

	Returns

	isdefined – True if and only if the map is defined on the element.

	Return type

	bool

	
then(other, *others)

	Returns the composite with other maps or pairs of maps of
oriented graded posets, when defined.

If given an OgMapPair as argument, it returns
the pair of composites of the map with each map in the pair.

	Parameters

	
	other (OgMap | OgMapPair) – The first map or pair of maps to follow.

	*others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to follow.

	Returns

	composite – The composite with all the other arguments.

	Return type

	OgMap | OgMapPair

Notes

If all the maps have type shapes.ShapeMap, their
composite has the same type.

	
inv()

	Returns the inverse of the map if it is an isomorphism.

	Returns

	inv – The inverse of the map, if defined.

	Return type

	OgMap

	Raises

	ValueError – If the map is not an isomorphism.

	
image()

	Returns the image of the map.

	Returns

	image – The image of the source through the map.

	Return type

	Closed

	
boundary(sign=None, dim=None)

	Returns the map restricted to a specified boundary of its source.

	Parameters

	
	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary – The map restricted to the requested boundary.

	Return type

	OgMap

	
property input

	Alias for boundary('-').

	
property output

	Alias for boundary('+').

	
bot()

	Functorial extension of OgPoset.bot() to maps.

	Returns

	bot – The map extended to a map from source.bot to
target.bot.

	Return type

	OgMap

	
static gray(*maps)

	Functorial extension of OgPoset.gray() to maps of oriented
graded posets.

This method can be called with the math operator *, that is,
fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method, that is,
fst.gray(*maps) is equivalent to gray(fst, *maps).

	Parameters

	*maps (OgMap) – Any number of maps of oriented graded posets.

	Returns

	gray – The Gray product of the arguments.

	Return type

	OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their
Gray product.

	
static join(*maps)

	Functorial extension of OgPoset.join() to maps of oriented
graded posets.

This method can be called with the shift operators >>
and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to
join(snd, fst).

This static method can also be used as a bound method, that is,
fst.join(*maps) is equivalent to join(fst, *maps).

	Parameters

	*maps (OgMap) – Any number of maps of oriented graded posets.

	Returns

	join – The join of the arguments.

	Return type

	OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their
join.

	
static dual(ogmap, *dims)

	Functorial extension of OgPoset.dual() to maps of oriented
graded posets.

The dual in all dimensions can also be called with the negation
operator ~, that is, ~ogmap is equivalent to
ogmap.dual().

This static method can be also used as a bound method, that is,
self.dual(*dims) is equivalent to dual(self, *dims).

	Parameters

	
	ogmap (OgMap) – A map of oriented graded posets.

	*dims (int) – Any number of dimensions; if none, defaults to all dimensions.

	Returns

	dual – The map dualised in the given dimensions.

	Return type

	OgMap

Notes

If the map is a ShapeMap, so is its dual.

	
op()

	Returns the dual in all odd dimensions.

	
co()

	Returns the dual in all even dimensions.

	
hasse(**params)

	Bound version of hasse.draw().

Calling f.hasse(**params) is equivalent to calling
hasse.draw(f, **params).

ogposets.El

	
class rewalt.ogposets.El(dim, pos)

	Bases: tuple

Class for elements of an oriented graded poset.

An element is encoded as a pair of non-negative integers:
the dimension of the element, and its position in a linear
order of elements of the given dimension.

	Parameters

	
	dim (int) – The dimension of the element.

	pos (int) – The position of the element.

Examples

>>> x = El(2, 3)
>>> x.dim
2
>>> x.pos
3

Methods

	shifted(k)

	Returns the element of the same dimension, with position shifted by a given integer.

Attributes

	dim

	Returns the dimension of the element.

	pos

	Returns the position of the element.

	
property dim

	Returns the dimension of the element.

	Returns

	dim – The dimension of the element.

	Return type

	int

	
property pos

	Returns the position of the element.

	Returns

	pos – The position of the element

	Return type

	int

	
shifted(k)

	Returns the element of the same dimension, with position shifted
by a given integer.

	Parameters

	k (int) – The shift in position.

	Returns

	shifted – The shifted element.

	Return type

	El

ogposets.GrSet

	
class rewalt.ogposets.GrSet(*elements)

	Bases: object

Class for sets of elements of an oriented graded poset, graded
by their dimension.

Objects of the class behave as sets; several methods of the set class
are supported. However the data is stored in a way that allows
fast access to elements of a given dimension.

	Parameters

	elements (El) – Any number of elements.

Examples

We create an instance by listing elements; repetitions do not count.

>>> test = GrSet(El(0, 2), El(0, 2), El(0, 3), El(2, 0), El(3, 1))
>>> test
GrSet(El(0, 2), El(0, 3), El(2, 0), El(3, 1))
>>> len(test)
4

We can access the subsets of elements of given dimensions with indexer
operators. These support slice syntax.

>>> test[0]
GrSet(El(0, 2), El(0, 3))
>>> test[0:3]
GrSet(El(0, 2), El(0, 3), El(2, 0))

The iterator for graded sets goes through the elements in increasing
dimension and, for each dimension, in increasing position.

>>> for x in test:
... print(x)
...
El(0, 2)
El(0, 3)
El(2, 0)
El(3, 1)

We can add and remove elements.

>>> test.remove(El(0, 3))
>>> test
GrSet(El(0, 2), El(2, 0), El(3, 1))
>>> test.add(El(1, 1))
>>> test
GrSet(El(0, 2), El(1, 1), El(2, 0), El(3, 1))

Set methods such as union, difference, and intersection are available
with the same syntax.

Methods

	add(element)

	Adds a single element.

	copy()

	Returns a copy of the graded set.

	difference(other)

	Returns the difference of the graded set with another graded set.

	intersection(*others)

	Returns the intersection of the graded set with other graded sets.

	isdisjoint(other)

	Returns whether the graded set is disjoint from another.

	issubset(other)

	Returns whether the graded set is a subset of another.

	remove(element)

	Removes a single element.

	union(*others)

	Returns the union of the graded set with other graded sets.

Attributes

	as_list

	Returns the list of elements in increasing dimension, and, dimensionwise, in increasing position.

	as_set

	Returns a Python set containing the same elements.

	dim

	Returns the maximal dimension in which the graded set is not empty, or -1 if it is empty.

	grades

	Returns the list of dimensions in which the graded set is not empty.

	
property grades

	Returns the list of dimensions in which the graded set is not empty.

	Returns

	grades – The list of dimensions in which the graded set is not empty.

	Return type

	list[int]

	
property dim

	Returns the maximal dimension in which the graded set is not empty,
or -1 if it is empty.

	Returns

	dim – The maximal dimension in which the graded set is not empty.

	Return type

	int

	
property as_set

	Returns a Python set containing the same elements.

	Returns

	as_set – A Python set containing the same elements.

	Return type

	set[El]

	
property as_list

	Returns the list of elements in increasing dimension, and,
dimensionwise, in increasing position.

	Returns

	as_list – A list containing the same elements.

	Return type

	list[El]

	
add(element)

	Adds a single element.

	Parameters

	element (El) – The element to add.

	
remove(element)

	Removes a single element.

	Parameters

	element (El) – The element to remove.

	
union(*others)

	Returns the union of the graded set with other graded sets.

	Parameters

	*others (GrSet) – Any number of graded sets.

	Returns

	union – The union of the graded set with all the given others.

	Return type

	GrSet

	
intersection(*others)

	Returns the intersection of the graded set with other graded sets.

	Parameters

	*others (GrSet) – Any number of graded sets.

	Returns

	intersection – The intersection of the graded set with all the given others.

	Return type

	GrSet

	
difference(other)

	Returns the difference of the graded set with another graded set.

	Parameters

	other (GrSet) – Another graded set.

	Returns

	difference – The difference between the two graded sets.

	Return type

	GrSet

	
issubset(other)

	Returns whether the graded set is a subset of another.

	Parameters

	other (GrSet) – Another graded set.

	Returns

	issubset – True if and only self is a subset of other.

	Return type

	bool

	
isdisjoint(other)

	Returns whether the graded set is disjoint from another.

	Parameters

	other (GrSet) – Another graded set.

	Returns

	isdisjoint – True if and only self and other are disjoint.

	Return type

	bool

	
copy()

	Returns a copy of the graded set.

	Returns

	copy – A copy of the graded set.

	Return type

	GrSet

ogposets.GrSubset

	
class rewalt.ogposets.GrSubset(support, ambient, **params)

	Bases: object

Class for graded subsets, that is, pairs of a GrSet and an
“ambient” OgPoset, where the first is seen as a subset of
the second.

While objects of the class GrSet are mutable, once they are
tied to an OgPoset they should be treated as immutable.

	Parameters

	
	support (GrSet) – The underlying graded set.

	ambient (OgPoset) – The ambient oriented graded poset.

	Keyword Arguments

	wfcheck (bool) – Check whether the support is a well-formed subset of the ambient,
that is, it has no elements out of range (default is True).

Notes

Two graded subsets are equal if and only if they have the same
elements, and they are subsets of the same OgPoset.

Examples

We create an oriented graded poset and a pair of graded sets.

>>> point = OgPoset.point()
>>> triangle = point >> point >> point
>>> set1 = GrSet(El(1, 1), El(0, 1))
>>> set2 = GrSet(El(0, 3))

We can attach set1 to triangle as a subset.

>>> subset = GrSubset(set1, triangle)
>>> assert subset.support == set1

Trying to do the same with set2 returns a ValueError
because El(0, 3) is out of range.

We can compute the downwards closure of set1 in
triangle.

>>> subset.closure().support
GrSet(El(0, 0), El(0, 1), El(0, 2), El(1, 1))

All the set-theoretic operations apply to graded subsets as long
as they have the same ambient OgPoset.

Methods

	closure()

	Returns the downwards closure of the graded subset.

	difference(other)

	Returns the difference with another graded subset of the same oriented graded poset.

	image(ogmap)

	Returns the image of the graded subset through a map of oriented graded posets.

	intersection(*others)

	Returns the intersection with other graded subsets of the same oriented graded poset.

	isdisjoint(other)

	Returns whether the object is disjoint from another graded subset of the same oriented graded poset.

	issubset(other)

	Returns whether the object is a subset of another subset of the same oriented graded poset.

	union(*others)

	Returns the union with other graded subsets of the same oriented graded poset.

Attributes

	ambient

	Returns the ambient oriented graded poset.

	dim

	Shorthand for support.dim.

	isclosed

	Returns whether the subset is (downwards) closed.

	support

	Returns the underlying graded set (the "support" of the subset).

	
property support

	Returns the underlying graded set (the “support” of the subset).

	Returns

	support – The underlying graded set.

	Return type

	GrSet

	
property ambient

	Returns the ambient oriented graded poset.

	Returns

	ambient – The ambient oriented graded poset.

	Return type

	OgPoset

	
property dim

	Shorthand for support.dim.

	
property isclosed

	Returns whether the subset is (downwards) closed.

	Returns

	isclosed – True if and only if the subset is downwards closed.

	Return type

	bool

	
union(*others)

	Returns the union with other graded subsets of the same oriented
graded poset.

	Parameters

	*others (GrSubset) – Any number of graded subsets of the same oriented graded poset.

	Returns

	union – The union of the graded subset with all the given others.

	Return type

	GrSubset

Notes

If all the arguments have type Closed, the union also
has type Closed.

	
intersection(*others)

	Returns the intersection with other graded subsets of the same
oriented graded poset.

	Parameters

	*others (GrSubset) – Any number of graded subsets of the same oriented graded poset.

	Returns

	intersection – The intersection of the graded subset with all the given others.

	Return type

	GrSubset

Notes

If all the arguments have type Closed, the intersection also
has type Closed.

	
difference(other)

	Returns the difference with another graded subset of the same
oriented graded poset.

	Parameters

	other (GrSubset) – Another graded subset of the same oriented graded poset.

	Returns

	difference – The difference between the two graded subsets.

	Return type

	GrSubset

	
issubset(other)

	Returns whether the object is a subset of another subset of
the same oriented graded poset.

	Parameters

	other (GrSubset) – Another graded subset of the same oriented graded poset.

	Returns

	issubset – True if and only self is a subset of other.

	Return type

	bool

	
isdisjoint(other)

	Returns whether the object is disjoint from another graded subset
of the same oriented graded poset.

	Parameters

	other (GrSubset) – Another graded subset of the same oriented graded poset.

	Returns

	issubset – True if and only self and other are disjoint.

	Return type

	bool

	
closure()

	Returns the downwards closure of the graded subset.

	Returns

	closure – The downwards closure of the subset.

	Return type

	Closed

	
image(ogmap)

	Returns the image of the graded subset through a map of oriented
graded posets.

	Parameters

	ogmap (OgMap) – A map from the ambient to another OgPoset.

	Returns

	image – The image of the subset through the given map.

	Return type

	GrSubset

Notes

If the object has type Closed, its image has also type
Closed.

ogposets.Closed

	
class rewalt.ogposets.Closed(support, ambient, **params)

	Bases: GrSubset

Subclass of GrSubset for (downwards) closed subsets.

Implements a number of methods that do not make sense for
non-closed subsets, in particular those computing input and output
boundaries in each dimension.

	Parameters

	
	support (GrSet) – The underlying graded set.

	ambient (OgPoset) – The ambient oriented graded poset.

	Keyword Arguments

	wfcheck (bool) – Check whether the support is a well-formed, closed subset of
the ambient (default is True).

Notes

There is an alternative constructor subset() which takes
a GrSubset, and “upgrades” it to a Closed if it
is downwards closed.

Examples

After creating an oriented graded poset, we can obtain the closed
subset of all its elements with OgPoset.all().

>>> point = OgPoset.point()
>>> triangle = point >> point >> point
>>> all = triangle.all()

We can compute its input and output boundary…

>>> all_in = all.input
>>> all_out = all.output

And since all happens to be a molecule, we can check the
“globular” relations.

>>> assert all_in.input == all_out.input
>>> assert all_in.output == all_out.output

Methods

	boundary([sign, dim])

	Returns the boundary of a given orientation and dimension.

	boundary_max([sign, dim])

	Returns the subset of maximal elements of the boundary of a given orientation and dimension.

	maximal()

	Returns the subset of maximal elements, that is, those that are not covered by any other element in the closed subset.

	subset(grsubset, **params)

	Alternative constructor that promotes a GrSubset to a Closed.

Attributes

	as_map

	Returns an injective map representing the inclusion of the closed subset in the ambient.

	input

	Alias for boundary('-').

	ispure

	Returns whether the maximal elements of the closed subset all have the same dimension.

	isround

	Returns whether the closed subset is round ("has spherical boundary").

	output

	Alias for boundary('+').

	
property as_map

	Returns an injective map representing the inclusion of the closed
subset in the ambient.

	Returns

	as_map – A map of oriented graded posets representing the inclusion of
the closed subset.

	Return type

	OgMap

	
property ispure

	Returns whether the maximal elements of the closed subset all have
the same dimension.

	Returns

	ispure – True if and only if the subset is pure.

	Return type

	bool

	
property isround

	Returns whether the closed subset is round (“has spherical
boundary”).

This means that, for all k smaller than the dimension of
the subset, the intersection of its input k-boundary
and of its output k-boundary is equal to its (k-1)-
boundary.

	Returns

	isround – True if and only if the subset is round.

	Return type

	bool

	
maximal()

	Returns the subset of maximal elements, that is, those that are not
covered by any other element in the closed subset.

	Returns

	maximal – The subset of maximal elements.

	Return type

	GrSubset

	
boundary_max(sign=None, dim=None)

	Returns the subset of maximal elements of the boundary of a given
orientation and dimension.

	Parameters

	
	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary_max – The maximal elements of the requested boundary.

	Return type

	GrSubset

	
boundary(sign=None, dim=None)

	Returns the boundary of a given orientation and dimension.

	Parameters

	
	sign (str, optional) – Orientation: '-' for input, '+' for output,
None (default) for both.

	dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

	Returns

	boundary – The requested boundary subset.

	Return type

	Closed

	
property input

	Alias for boundary('-').

	
property output

	Alias for boundary('+').

	
static subset(grsubset, **params)

	Alternative constructor that promotes a GrSubset to a
Closed.

	Parameters

	grsubset (GrSubset) – The subset to promote.

	Keyword Arguments

	wfcheck (bool) – Check whether the subset is downwards closed
(default is True).

ogposets.OgMapPair

	
class rewalt.ogposets.OgMapPair(fst, snd)

	Bases: tuple

Class for pairs of maps of oriented graded posets.

This is used as the argument and/or return type of pushouts and
coequalisers, which play a prominent role in the theory.

	Parameters

	
	fst (OgMap) – The first map in the pair.

	snd (OgMap) – The second map in the pair.

Methods

	coequaliser(**params)

	Returns the coequaliser of a parallel pair of total maps, if it exists.

	pushout(**params)

	Returns the pushout of a span of total maps, if it exists.

	then(other, *others)

	Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

Attributes

	fst

	Returns the first map in the pair.

	iscospan

	Returns whether the pair is a cospan (has a common target).

	isinjective

	Returns whether both maps are injective.

	isparallel

	Returns whether the pair is parallel (both a span and a cospan).

	isspan

	Returns whether the pair is a span (has a common source).

	issurjective

	Returns whether both maps are surjective.

	istotal

	Returns whether both maps are total.

	snd

	Returns the second map in the pair.

	source

	Returns the pair of sources of the pair of maps, or, if a span, their common source.

	target

	Returns the pair of targets of the pair of maps, or, if a cospan, their common target.

	
property fst

	Returns the first map in the pair.

	Returns

	fst – The first map in the pair.

	Return type

	OgMap

	
property snd

	Returns the second map in the pair.

	Returns

	snd – The second map in the pair.

	Return type

	OgMap

	
property source

	Returns the pair of sources of the pair of maps, or, if a
span, their common source.

	Returns

	source – The source or sources of the pair.

	Return type

	OgMap | tuple[OgMap]

	
property target

	Returns the pair of targets of the pair of maps, or, if a
cospan, their common target.

	Returns

	target – The target or targets of the pair.

	Return type

	OgMap | tuple[OgMap]

	
property isspan

	Returns whether the pair is a span (has a common source).

	Returns

	isspan – True if and only if the pair is a span.

	Return type

	bool

	
property iscospan

	Returns whether the pair is a cospan (has a common target).

	Returns

	iscospan – True if and only if the pair is a cospan.

	Return type

	bool

	
property isparallel

	Returns whether the pair is parallel (both a span and a cospan).

	Returns

	isparallel – True if and only if the pair is parallel.

	Return type

	bool

	
property istotal

	Returns whether both maps are total.

	Returns

	istotal – True if and only if both maps are total.

	Return type

	bool

	
property isinjective

	Returns whether both maps are injective.

	Returns

	isinjective – True if and only if both maps are injective.

	Return type

	bool

	
property issurjective

	Returns whether both maps are surjective.

	Returns

	issurjective – True if and only if both maps are surjective.

	Return type

	bool

	
then(other, *others)

	Returns the composite with other maps or pairs of maps of oriented
graded posets, when defined.

If given two pairs, it composes the first map with the first map,
and the second map with the second map. If given a pair and
a map, it composes both maps in the pair with the map.

	Parameters

	
	other (OgMap | OgMapPair) – The first map or pair of maps to follow.

	others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to follow.

	Returns

	composite – The composite with all the other arguments.

	Return type

	OgMapPair

	
coequaliser(**params)

	Returns the coequaliser of a parallel pair of total maps,
if it exists.

	Keyword Arguments

	wfcheck (bool) – Check whether the coequaliser is well-defined.

	Returns

	coequaliser – The coequaliser of the pair of maps.

	Return type

	OgMap

	Raises

	ValueError – If the pair is not total and parallel.

	
pushout(**params)

	Returns the pushout of a span of total maps, if it exists.

Pushouts do not always exist in the category of oriented graded
posets and maps; however, pushouts of injective (total) maps do always
exist.

	Keyword Arguments

	wfcheck (bool) – Check whether the pushout is well-defined.

	Returns

	pushout – The pushout cospan of the pair of maps.

	Return type

	OgMapPair

	Raises

	ValueError – If the pair is not total and a span.

strdiags

Implements string diagram visualisations.

	rewalt.strdiags.StrDiag(diagram)

	Class for string diagram visualisations of diagrams and shapes.

	rewalt.strdiags.draw(*diagrams, **params)

	Given any number of diagrams, generates their string diagrams and draws them.

	rewalt.strdiags.draw_boundaries(diagram[, dim])

	Given a diagram, generates the string diagram of its input and output boundaries of a given dimension, and draws them.

	rewalt.strdiags.to_gif(diagram, *diagrams, ...)

	Given a non-zero number of diagrams, generates their string diagrams and outputs a GIF animation of the sequence of their visualisations.

strdiags.StrDiag

	
class rewalt.strdiags.StrDiag(diagram)

	Bases: object

Class for string diagram visualisations of diagrams and shapes.

A string diagram depicts a top-dimensional “slice” of a diagram.
The top-dimensional cells are represented as nodes, and the
codimension-1 cells are represented as wires. The inputs of a
top-dimensional cell are incoming wires of the associated node,
and the outputs are outgoing wires.

The input->node->output order determines an acyclic flow
between nodes and wires, which is represented in a string diagram
by placing them at different “heights”.

There are two other “flows” that we take into account:

	from codimension-2 inputs, to top-dimensional or codimension-1
cell, to codimension-2 outputs (only in dimension > 1);

	from codimension-3 inputs, to codimension-1 cells, to
codimension-3 outputs (only in dimension > 2).

These are not in general acyclic; however, we obtain an acyclic
flow by removing all directed loops. If there is a flow of the first
kind between nodes and wires, we place them at different “widths”.

If there is a flow of the second kind between wires, we place them
at different “depths”; this is only seen when wires cross each other,
in which case the one of lower depth is depicted as passing over
the one of higher depth.

Internally, these data are encoded as a triple of NetworkX directed
graphs, sharing the same vertices, partitioned into “node vertices”
and “wire vertices”. These graphs encode the “main (height) flow”, the
“width flow” and the “depth flow” between nodes and wires.

The class then contains a method place_vertices() that places
the vertices on a [0, 1]x[0, 1] canvas, taking into account the
height and width relations and resolving clashes.

Finally, it contains a method draw() that outputs a
visualisation of the string diagram. The visualisation has
customisable colours, orientation, and labels, and works with any
drawing.DrawBackend; currently available are

	a Matplotlib backend, and

	a TikZ backend.

	Parameters

	diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or a shape or a shape map.

Notes

The “main flow” graph is essentially the open graph encoding of
the string diagram in the sense of Dixon & Kissinger.

Methods

	draw(**params)

	Outputs a visualisation of the string diagram, using a backend.

	place_vertices()

	Places node and wire vertices on the unit square canvas, and returns their coordinates.

Attributes

	depthgraph

	Returns the "depth" flow graph between wire vertices.

	graph

	Returns the main flow graph between node and wire vertices.

	nodes

	Returns the nodes of the string diagram, together with all the stored associated information.

	widthgraph

	Returns the "width" flow graph between node and wire vertices.

	wires

	Returns the wires of the string diagram, together with all the stored associated information.

	
property graph

	Returns the main flow graph between node and wire vertices.

	Returns

	graph – The main flow graph.

	Return type

	networkx.DiGraph

	
property widthgraph

	Returns the “width” flow graph between node and wire vertices.

	Returns

	widthgraph – The width flow graph.

	Return type

	networkx.DiGraph

	
property depthgraph

	Returns the “depth” flow graph between wire vertices.

	Returns

	depthgraph – The depth flow graph.

	Return type

	networkx.DiGraph

	
property nodes

	Returns the nodes of the string diagram, together with all
the stored associated information.

This is a dictionary whose keys are the elements
of the diagram’s shape corresponding to nodes. For each node, the
object stores another dictionary, which contains

	the node’s label (label),

	the node’s fill colour (color) and stroke colour
(stroke),

	booleans specifying whether to draw the node and/or its label
(draw_node, draw_label), and

	a boolean specifying whether the node represents a degenerate
cell (isdegenerate).

	Returns

	nodes – The nodes of the string diagram.

	Return type

	dict[dict]

	
property wires

	Returns the wires of the string diagram, together with all
the stored associated information.

This is a dictionary whose keys are the elements
of the diagram’s shape corresponding to wires. For each node, the
object stores another dictionary, which contains

	the wire’s label (label),

	the wire’s colour (color),

	a boolean specifying whether to draw the wire’s label
(draw_label), and

	a boolean specifying whether the wire represents a degenerate
cell (isdegenerate).

	Returns

	wires – The nodes of the string diagram.

	Return type

	dict[dict]

	
place_vertices()

	Places node and wire vertices on the unit square canvas, and
returns their coordinates.

The node and wire vertices are first placed on different heights
and widths, proportional to the ratio between the longest path
to the vertex and the longest path from the vertex in the main
flow graph and the width flow graph.

In dimension > 2, this may result in clashes, where some vertices
are given the same coordinates. In this case, these are
resolved by “splitting” the clashing vertices, placing them
at equally spaced angles of a circle centred on the clash
coordinates, with an appropriately small radius that does not
result in further clashes.

The coordinates are returned as a dictionary whose keys are
the elements corresponding to nodes and wires.

	Returns

	coordinates – The coordinates assigned to wire and node vertices.

	Return type

	dict[tuple[float]]

	
draw(**params)

	Outputs a visualisation of the string diagram, using a backend.

Currently supported are a Matplotlib backend and a TikZ backend;
in both cases it is possible to show the output (as a pop-up
window for Matplotlib, or as code for TikZ) or save to file.

Various customisation options are available, including different
orientations and colours.

	Keyword Arguments

	
	tikz (bool) – Whether to output TikZ code (default is False).

	show (bool) – Whether to show the output (default is True).

	path (str) – Path where to save the output (default is None).

	orientation (str) – Orientation of the string diagram: one of 'bt'
(bottom-to-top), 'lr' (left-to-right),
'tb' (top-to-bottom), 'rl' (right-to-left)
(default is 'bt').

	depth (bool) – Whether to take into account the depth flow graph when
drawing wires (default is True).

	bgcolor (multiple types) – The background colour (default is 'white').

	fgcolor (multiple types) – The foreground colour, given by default to nodes, wires,
and labels (default is 'black').

	infocolor (multiple types) – The colour of additional information displayed in
the diagram, such as positions (default is 'magenta').

	wirecolor (multiple types) – The default wire colour (default is same as fgcolor).

	nodecolor (multiple types) – The default node fill colour (default is same as fgcolor).

	nodestroke (multiple types) – The default node stroke colour (default is same as nodecolor).

	degenalpha (float) – The alpha factor of wires corresponding to degenerate cells
(default is 0.1).

	labels (bool) – Whether to display node and wire labels (default is
True).

	nodelabels (bool) – Whether to display node labels (default is same as labels).

	wirelabels (bool) – Whether to display wire labels (default is same as labels).

	labeloffset (tuple[float]) – Point offset of labels relative to vertices (default is
(4, 4)).

	positions (bool) – Whether to display node and wire positions (default is
False).

	nodepositions (bool) – Whether to display node positions (default is same as
positions).

	wirepositions (bool) – Whether to display wire positions (default is same as
positions).

	positionoffset (tuple[float]) – Point offset of positions relative to vertices (default is
(4, -16) for Matplotlib, (4, -6) for TikZ).

	scale (float) – (TikZ only) Scale factor to apply to output (default is
3).

	xscale (float) – (TikZ only) Scale factor to apply to x axis in output
(default is same as scale)

	yscale (float) – (TikZ only) Scale factor to apply to y axis in output
(default is same as scale)

strdiags.draw

	
class rewalt.strdiags.draw(*diagrams, **params)

	Bases:

Given any number of diagrams, generates their string
diagrams and draws them.

This is the same as generating the string diagram for each
diagram, and calling StrDiag.draw() with the given
parameters on each one of them.

	Parameters

	*diagrams (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – Any number of diagrams or shapes or shape maps.

	Keyword Arguments

	**params – Passed to StrDiag.draw().

strdiags.draw_boundaries

	
class rewalt.strdiags.draw_boundaries(diagram, dim=None, **params)

	Bases:

Given a diagram, generates the string diagram of its input and
output boundaries of a given dimension, and draws them.

	Parameters

	
	diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or a shape or a shape map.

	dim (int, optional) – Dimension of the boundary (default is diagram.dim - 1).

	Keyword Arguments

	*params – Passed to StrDiag.draw().

strdiags.to_gif

	
class rewalt.strdiags.to_gif(diagram, *diagrams, **params)

	Bases:

Given a non-zero number of diagrams, generates their string
diagrams and outputs a GIF animation of the sequence of their
visualisations.

	Parameters

	
	diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or a shape or a shape map.

	*diagrams (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – Any number of diagrams or shapes or shape maps.

	Keyword Arguments

	
	timestep (int) – The time step for the animation (default is 1000).

	loop (bool) – Whether to loop around the animation (default is False).

	**params – Passed to StrDiag.draw().

hasse

Implements oriented Hasse diagram visualisation.

	rewalt.hasse.Hasse(ogp)

	Class for "oriented Hasse diagrams" of oriented graded posets.

	rewalt.hasse.draw(*ogps, **params)

	Given any number of oriented graded posets, or maps, or diagrams, generates their Hasse diagrams and draws them.

hasse.Hasse

	
class rewalt.hasse.Hasse(ogp)

	Bases: object

Class for “oriented Hasse diagrams” of oriented graded posets.

The oriented Hasse diagram is stored as a NetworkX directed graph
whose nodes are the elements of the oriented graded poset.

The orientation information is encoded by having edges corresponding
to input faces point from the face, and edges corresponding to
output faces point towards the face. To recover the underlying
poset’s Hasse diagram, it suffices to reverse the edges that point
from an element of higher dimension.

Objects of the class can also store labels for nodes of the Hasse
diagram, for example the images of the corresponding elements
through a map or a diagram.

The class also has a method draw() that outputs a visualisation
of the Hasse diagram. This works with any drawing.DrawBackend;
currently available are

	a Matplotlib backend, and

	a TikZ backend.

	Parameters

	ogp (ogposets.OgPoset | ogposets.OgMap | diagrams.Diagram) – The oriented graded poset, or a map of oriented graded posets,
or a diagram.

Notes

If given a map of oriented graded posets (or shapes), produces the
Hasse diagram of its source, with nodes labelled with the images
of elements through the map.

If given a diagram, produces the Hasse diagram of its shape, with
nodes labelled with the images of elements through the diagram.

Methods

	draw(**params)

	Outputs a visualisation of the Hasse diagram, using a backend.

	place_nodes()

	Places the nodes of the Hasse diagram on the unit square canvas, and returns their coordinates.

Attributes

	diagram

	Returns the oriented Hasse diagram as a NetworkX graph.

	labels

	Returns the labels of nodes of the Hasse diagram, in the same format as ogposets.OgMap.mapping().

	nodes

	Returns the set of nodes of the Hasse diagram, that is, the graded set of elements of the oriented graded poset it encodes.

	
property nodes

	Returns the set of nodes of the Hasse diagram, that is, the
graded set of elements of the oriented graded poset it encodes.

	Returns

	nodes – The set of nodes of the Hasse diagram.

	Return type

	ogposets.GrSet

	
property diagram

	Returns the oriented Hasse diagram as a NetworkX graph.

	Returns

	diagram – The oriented Hasse diagram.

	Return type

	networkx.DiGraph

	
property labels

	Returns the labels of nodes of the Hasse diagram, in the
same format as ogposets.OgMap.mapping().

	Returns

	labels – The labels of the Hasse diagram.

	Return type

	list[list]

	
place_nodes()

	Places the nodes of the Hasse diagram on the unit square
canvas, and returns their coordinates.

The nodes are placed on different heights according to the
dimension of the element their correspond to.
Elements of the same dimension are then placed at different
widths in order of position.

The coordinates are returned as a dictionary whose keys are
the elements corresponding to nodes of the diagram.

	Returns

	coordinates – The coordinates assigned to nodes.

	Return type

	dict[tuple[float]]

	
draw(**params)

	Outputs a visualisation of the Hasse diagram, using a backend.

Currently supported are a Matplotlib backend and a TikZ backend;
in both cases it is possible to show the output (as a pop-up
window for Matplotlib, or as code for TikZ) or save to file.

Various customisation options are available, including different
orientations and colours.

	Keyword Arguments

	
	tikz (bool) – Whether to output TikZ code (default is False).

	show (bool) – Whether to show the output (default is True).

	path (str) – Path where to save the output (default is None).

	orientation (str) – Orientation of the Hasse diagram: one of 'bt'
(bottom-to-top), 'lr' (left-to-right),
'tb' (top-to-bottom), 'rl' (right-to-left)
(default is 'bt').

	bgcolor (multiple types) – The background colour (default is 'white').

	fgcolor (multiple types) – The foreground colour, given by default to nodes
and labels (default is 'black').

	labels (bool) – Whether to display node labels (default is True).

	inputcolor (multiple types) – The colour of edges corresponding to input faces
(default is 'magenta').

	outputcolor (multiple types) – The colour of edges corresponding to output faces
(default is 'blue').

	xscale (float) – (TikZ only) Scale factor to apply to x axis in output
(default is based on the dimension and maximal number of
elements in one dimension).

	yscale (float) – (TikZ only) Scale factor to apply to y axis in output
(default is based on the dimension and maximal number of
elements in one dimension).

hasse.draw

	
class rewalt.hasse.draw(*ogps, **params)

	Bases:

Given any number of oriented graded posets, or maps, or diagrams,
generates their Hasse diagrams and draws them.

This is the same as generating the Hasse diagram for each
argument, and calling Hasse.draw() with the given
parameters on each one of them.

	Parameters

	*ogps (ogposets.OgPoset | ogposets.OgMap | diagrams.Diagram) – Any number of oriented graded posets or maps or diagrams.

	Keyword Arguments

	**params – Passed to Hasse.draw().

drawing

Drawing backends.

	rewalt.drawing.DrawBackend(**params)

	Abstract drawing backend for placing nodes, wires, arrows, and labels on a canvas.

	rewalt.drawing.MatBackend(**params)

	Drawing backend outputting Matplotlib figures.

	rewalt.drawing.TikZBackend(**params)

	Drawing backend outputting TikZ code that can be embedded in a LaTeX document.

drawing.DrawBackend

	
class rewalt.drawing.DrawBackend(**params)

	Bases: ABC

Abstract drawing backend for placing nodes, wires, arrows,
and labels on a canvas.

The purpose of this class is simply to describe the signature
of methods that subclasses have to implement.

	Keyword Arguments

	
	bgcolor (multiple types) – The background colour (default is 'white').

	fgcolor (multiple types) – The foreground colour (default is 'black').

	orientation (str) – Orientation: one of 'bt' (bottom-to-top), 'lr'
(left-to-right), 'tb' (top-to-bottom), 'rl'
(right-to-left) (default is 'bt').

Notes

All coordinates should be passed to the backend as if the
orientation was bottom-to-top; the backend will then make rotations
and adjustments according to the chosen orientation.

Methods

	draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	draw_node(xy, **params)

	Draws a node on the canvas.

	draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	output(**params)

	Output the picture.

	rotate(xy)

	Returns coordinates rotated according to the orientation of the picture.

	
draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	Parameters

	
	wire_xy (tuple[float]) – The coordinates of the wire vertex.

	node_xy (tuple[float]) – The coordinates of the node vertex.

	Keyword Arguments

	
	color (multiple types) – The colour of the wire (default is self.fgcolor).

	alpha (float) – Alpha factor of the wire (default is 1).

	depth (bool) – Whether to draw the wire with a contour, to simulate “crossing
over” objects that are already on the canvas (default is
True).

	
draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	Parameters

	
	label (str) – The label.

	xy (tuple[float]) – The coordinates of the object to be labelled.

	offset (tuple[float]) – Point offset of the label relative to the object.

	Keyword Arguments

	color (multiple types) – The colour of the label (default is self.fgcolor).

	
draw_node(xy, **params)

	Draws a node on the canvas.

	Parameters

	xy (tuple[float]) – The coordinates of the node.

	Keyword Arguments

	
	color (multiple types) – Fill colour of the node (default is self.fgcolor).

	stroke (multiple types) – Stroke colour of the node (default is same as color).

	
draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	Parameters

	
	xy0 (tuple[float]) – The coordinates of the starting point.

	xy1 (tuple[float]) – The coordinates of the ending point.

	Keyword Arguments

	
	color (multiple types) – Colour of the arrow (default is self.fgcolor).

	shorten (float) – Factor by which to scale the length (default is 1).

	
output(**params)

	Output the picture.

	Keyword Arguments

	
	show (bool) – Whether to show the output (default is True).

	path (str) – Path where to save the output (default is None).

	scale (float) – (TikZ only) Scale factor to apply to output (default is
3).

	xscale (float) – (TikZ only) Scale factor to apply to x axis in output
(default is same as scale)

	yscale (float) – (TikZ only) Scale factor to apply to y axis in output
(default is same as scale)

	
rotate(xy)

	Returns coordinates rotated according to the orientation
of the picture.

	Parameters

	xy (tuple[float]) – The coordinates to rotate.

	Returns

	rotate – The rotated coordinates.

	Return type

	tuple[float]

drawing.MatBackend

	
class rewalt.drawing.MatBackend(**params)

	Bases: DrawBackend

Drawing backend outputting Matplotlib figures.

Methods

	draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	draw_node(xy, **params)

	Draws a node on the canvas.

	draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	output(**params)

	Output the picture.

	
draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	Parameters

	
	wire_xy (tuple[float]) – The coordinates of the wire vertex.

	node_xy (tuple[float]) – The coordinates of the node vertex.

	Keyword Arguments

	
	color (multiple types) – The colour of the wire (default is self.fgcolor).

	alpha (float) – Alpha factor of the wire (default is 1).

	depth (bool) – Whether to draw the wire with a contour, to simulate “crossing
over” objects that are already on the canvas (default is
True).

	
draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	Parameters

	
	label (str) – The label.

	xy (tuple[float]) – The coordinates of the object to be labelled.

	offset (tuple[float]) – Point offset of the label relative to the object.

	Keyword Arguments

	color (multiple types) – The colour of the label (default is self.fgcolor).

	
draw_node(xy, **params)

	Draws a node on the canvas.

	Parameters

	xy (tuple[float]) – The coordinates of the node.

	Keyword Arguments

	
	color (multiple types) – Fill colour of the node (default is self.fgcolor).

	stroke (multiple types) – Stroke colour of the node (default is same as color).

	
draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	Parameters

	
	xy0 (tuple[float]) – The coordinates of the starting point.

	xy1 (tuple[float]) – The coordinates of the ending point.

	Keyword Arguments

	
	color (multiple types) – Colour of the arrow (default is self.fgcolor).

	shorten (float) – Factor by which to scale the length (default is 1).

	
output(**params)

	Output the picture.

	Keyword Arguments

	
	show (bool) – Whether to show the output (default is True).

	path (str) – Path where to save the output (default is None).

	scale (float) – (TikZ only) Scale factor to apply to output (default is
3).

	xscale (float) – (TikZ only) Scale factor to apply to x axis in output
(default is same as scale)

	yscale (float) – (TikZ only) Scale factor to apply to y axis in output
(default is same as scale)

drawing.TikZBackend

	
class rewalt.drawing.TikZBackend(**params)

	Bases: DrawBackend

Drawing backend outputting TikZ code that can be embedded in a
LaTeX document.

Methods

	draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	draw_node(xy, **params)

	Draws a node on the canvas.

	draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	output(**params)

	Output the picture.

	
draw_wire(wire_xy, node_xy, **params)

	Draws a wire from a wire vertex to a node vertex on the canvas.

	Parameters

	
	wire_xy (tuple[float]) – The coordinates of the wire vertex.

	node_xy (tuple[float]) – The coordinates of the node vertex.

	Keyword Arguments

	
	color (multiple types) – The colour of the wire (default is self.fgcolor).

	alpha (float) – Alpha factor of the wire (default is 1).

	depth (bool) – Whether to draw the wire with a contour, to simulate “crossing
over” objects that are already on the canvas (default is
True).

	
draw_label(label, xy, offset, **params)

	Draws a label next to a location on the canvas.

	Parameters

	
	label (str) – The label.

	xy (tuple[float]) – The coordinates of the object to be labelled.

	offset (tuple[float]) – Point offset of the label relative to the object.

	Keyword Arguments

	color (multiple types) – The colour of the label (default is self.fgcolor).

	
draw_node(xy, **params)

	Draws a node on the canvas.

	Parameters

	xy (tuple[float]) – The coordinates of the node.

	Keyword Arguments

	
	color (multiple types) – Fill colour of the node (default is self.fgcolor).

	stroke (multiple types) – Stroke colour of the node (default is same as color).

	
draw_arrow(xy0, xy1, **params)

	Draws an arrow on the canvas.

	Parameters

	
	xy0 (tuple[float]) – The coordinates of the starting point.

	xy1 (tuple[float]) – The coordinates of the ending point.

	Keyword Arguments

	
	color (multiple types) – Colour of the arrow (default is self.fgcolor).

	shorten (float) – Factor by which to scale the length (default is 1).

	
output(**params)

	Output the picture.

	Keyword Arguments

	
	show (bool) – Whether to show the output (default is True).

	path (str) – Path where to save the output (default is None).

	scale (float) – (TikZ only) Scale factor to apply to output (default is
3).

	xscale (float) – (TikZ only) Scale factor to apply to x axis in output
(default is same as scale)

	yscale (float) – (TikZ only) Scale factor to apply to y axis in output
(default is same as scale)

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rewalt	

 	
 	
 rewalt.diagrams	

 	
 	
 rewalt.drawing	

 	
 	
 rewalt.hasse	

 	
 	
 rewalt.ogposets	

 	
 	
 rewalt.shapes	

 	
 	
 rewalt.strdiags	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

A

 	
 	add() (rewalt.diagrams.DiagSet method)

 	(rewalt.ogposets.GrSet method)

 	add_cube() (rewalt.diagrams.DiagSet method)

 	add_simplex() (rewalt.diagrams.DiagSet method)

 	all() (rewalt.ogposets.OgPoset method)

 	all_layerings() (rewalt.shapes.Shape method)

 	ambient (rewalt.diagrams.Diagram property)

 	(rewalt.ogposets.GrSubset property)

 	
 	arrow() (rewalt.shapes.Shape static method)

 	as_chain (rewalt.ogposets.OgPoset property)

 	as_list (rewalt.ogposets.GrSet property)

 	as_map (rewalt.ogposets.Closed property)

 	as_set (rewalt.ogposets.GrSet property)

 	atom() (rewalt.shapes.Shape static method)

 	atom_inclusion() (rewalt.shapes.Shape method)

B

 	
 	bot() (rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

 	boundary() (rewalt.diagrams.Diagram method)

 	(rewalt.ogposets.Closed method)

 	(rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

 	(rewalt.shapes.Shape method)

 	
 	boundary_max() (rewalt.ogposets.Closed method)

 	by_dim (rewalt.diagrams.DiagSet property)

C

 	
 	Closed (class in rewalt.ogposets)

 	closure() (rewalt.ogposets.GrSubset method)

 	co() (rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

 	coequaliser() (rewalt.ogposets.OgMapPair method)

 	coface_data (rewalt.ogposets.OgPoset property)

 	cofaces() (rewalt.ogposets.OgPoset method)

 	compose() (rewalt.diagrams.DiagSet method)

 	composite (rewalt.diagrams.Diagram property)

 	compositor (rewalt.diagrams.Diagram property)

 	compositors (rewalt.diagrams.DiagSet property)

 	
 	coproduct() (rewalt.ogposets.OgPoset static method)

 	copy() (rewalt.diagrams.DiagSet method)

 	(rewalt.ogposets.GrSet method)

 	Cube (class in rewalt.shapes)

 	cube() (rewalt.shapes.Shape static method)

 	cube_connection() (rewalt.diagrams.CubeDiagram method)

 	(rewalt.shapes.Cube method)

 	cube_degeneracy() (rewalt.diagrams.CubeDiagram method)

 	(rewalt.shapes.Cube method)

 	cube_face() (rewalt.diagrams.CubeDiagram method)

 	(rewalt.shapes.Cube method)

 	CubeDiagram (class in rewalt.diagrams)

D

 	
 	degeneracy() (rewalt.diagrams.PointDiagram method)

 	depthgraph (rewalt.strdiags.StrDiag property)

 	Diagram (class in rewalt.diagrams)

 	diagram (rewalt.hasse.Hasse property)

 	DiagSet (class in rewalt.diagrams)

 	difference() (rewalt.ogposets.GrSet method)

 	(rewalt.ogposets.GrSubset method)

 	dim (rewalt.diagrams.Diagram property)

 	(rewalt.diagrams.DiagSet property)

 	(rewalt.ogposets.El property)

 	(rewalt.ogposets.GrSet property)

 	(rewalt.ogposets.GrSubset property)

 	(rewalt.ogposets.OgPoset property)

 	disjoint_union() (rewalt.ogposets.OgPoset static method)

 	draw (class in rewalt.hasse)

 	(class in rewalt.strdiags)

 	draw() (rewalt.diagrams.Diagram method)

 	(rewalt.hasse.Hasse method)

 	(rewalt.shapes.Shape method)

 	(rewalt.shapes.ShapeMap method)

 	(rewalt.strdiags.StrDiag method)

 	
 	draw_arrow() (rewalt.drawing.DrawBackend method)

 	(rewalt.drawing.MatBackend method)

 	(rewalt.drawing.TikZBackend method)

 	draw_boundaries (class in rewalt.strdiags)

 	draw_boundaries() (rewalt.diagrams.Diagram method)

 	(rewalt.shapes.Shape method)

 	(rewalt.shapes.ShapeMap method)

 	draw_label() (rewalt.drawing.DrawBackend method)

 	(rewalt.drawing.MatBackend method)

 	(rewalt.drawing.TikZBackend method)

 	draw_node() (rewalt.drawing.DrawBackend method)

 	(rewalt.drawing.MatBackend method)

 	(rewalt.drawing.TikZBackend method)

 	draw_wire() (rewalt.drawing.DrawBackend method)

 	(rewalt.drawing.MatBackend method)

 	(rewalt.drawing.TikZBackend method)

 	DrawBackend (class in rewalt.drawing)

 	dual() (rewalt.ogposets.OgMap static method)

 	(rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

 	(rewalt.shapes.ShapeMap method)

E

 	
 	El (class in rewalt.ogposets)

 	
 	empty() (rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

F

 	
 	face_data (rewalt.ogposets.OgPoset property)

 	faces() (rewalt.ogposets.OgPoset method)

 	
 	from_face_data() (rewalt.ogposets.OgPoset class method)

 	fst (rewalt.ogposets.OgMapPair property)

G

 	
 	generate_layering() (rewalt.diagrams.Diagram method)

 	(rewalt.shapes.Shape method)

 	(rewalt.shapes.ShapeMap method)

 	generators (rewalt.diagrams.DiagSet property)

 	globe() (rewalt.shapes.Shape static method)

 	grades (rewalt.ogposets.GrSet property)

 	
 	graph (rewalt.strdiags.StrDiag property)

 	gray() (rewalt.ogposets.OgMap static method)

 	(rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

 	(rewalt.shapes.ShapeMap static method)

 	GrSet (class in rewalt.ogposets)

 	GrSubset (class in rewalt.ogposets)

H

 	
 	hascomposite (rewalt.diagrams.Diagram property)

 	Hasse (class in rewalt.hasse)

 	
 	hasse() (rewalt.diagrams.Diagram method)

 	(rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

I

 	
 	id() (rewalt.ogposets.OgPoset method)

 	(rewalt.shapes.Shape method)

 	image() (rewalt.ogposets.GrSubset method)

 	(rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

 	inflate() (rewalt.shapes.Shape method)

 	initial() (rewalt.shapes.Shape method)

 	input (rewalt.diagrams.Diagram property)

 	(rewalt.ogposets.Closed property)

 	(rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgPoset property)

 	intersection() (rewalt.ogposets.GrSet method)

 	(rewalt.ogposets.GrSubset method)

 	inv() (rewalt.ogposets.OgMap method)

 	inverse (rewalt.diagrams.Diagram property)

 	invert() (rewalt.diagrams.DiagSet method)

 	isatom (rewalt.shapes.Shape property)

 	iscell (rewalt.diagrams.Diagram property)

 	isclosed (rewalt.ogposets.GrSubset property)

 	iscospan (rewalt.ogposets.OgMapPair property)

 	iscubical (rewalt.diagrams.DiagSet property)

 	
 	isdefined() (rewalt.ogposets.OgMap method)

 	isdegenerate (rewalt.diagrams.Diagram property)

 	isdisjoint() (rewalt.ogposets.GrSet method)

 	(rewalt.ogposets.GrSubset method)

 	isinjective (rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgMapPair property)

 	isinvertiblecell (rewalt.diagrams.Diagram property)

 	isiso (rewalt.ogposets.OgMap property)

 	isparallel (rewalt.ogposets.OgMapPair property)

 	ispure (rewalt.ogposets.Closed property)

 	isround (rewalt.diagrams.Diagram property)

 	(rewalt.ogposets.Closed property)

 	(rewalt.shapes.Shape property)

 	issimplicial (rewalt.diagrams.DiagSet property)

 	isspan (rewalt.ogposets.OgMapPair property)

 	issubset() (rewalt.ogposets.GrSet method)

 	(rewalt.ogposets.GrSubset method)

 	issurjective (rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgMapPair property)

 	istotal (rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgMapPair property)

J

 	
 	join() (rewalt.ogposets.OgMap static method)

 	(rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

 	(rewalt.shapes.ShapeMap static method)

L

 	
 	labels (rewalt.hasse.Hasse property)

 	layers (rewalt.diagrams.Diagram property)

 	(rewalt.shapes.Shape property)

 	(rewalt.shapes.ShapeMap property)

 	
 	linvertor (rewalt.diagrams.Diagram property)

 	lunitor() (rewalt.diagrams.Diagram method)

M

 	
 	make_composite() (rewalt.diagrams.DiagSet method)

 	make_inverses() (rewalt.diagrams.DiagSet method)

 	mapping (rewalt.diagrams.Diagram property)

 	(rewalt.ogposets.OgMap property)

 	MatBackend (class in rewalt.drawing)

 	maximal() (rewalt.ogposets.Closed method)

 	(rewalt.ogposets.OgPoset method)

 	merge() (rewalt.shapes.Shape method)

 	
 	
 module

 	rewalt

 	rewalt.diagrams

 	rewalt.drawing

 	rewalt.hasse

 	rewalt.ogposets

 	rewalt.shapes

 	rewalt.strdiags

N

 	
 	name (rewalt.diagrams.Diagram property)

 	nodes (rewalt.hasse.Hasse property)

 	(rewalt.strdiags.StrDiag property)

 	
 	none() (rewalt.ogposets.OgPoset method)

O

 	
 	OgMap (class in rewalt.ogposets)

 	OgMapPair (class in rewalt.ogposets)

 	OgPoset (class in rewalt.ogposets)

 	op() (rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgPoset method)

 	output (rewalt.diagrams.Diagram property)

 	(rewalt.ogposets.Closed property)

 	(rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgPoset property)

 	
 	output() (rewalt.drawing.DrawBackend method)

 	(rewalt.drawing.MatBackend method)

 	(rewalt.drawing.TikZBackend method)

P

 	
 	paste() (rewalt.diagrams.Diagram method)

 	(rewalt.shapes.Shape static method)

 	paste_along() (rewalt.shapes.Shape static method)

 	place_nodes() (rewalt.hasse.Hasse method)

 	place_vertices() (rewalt.strdiags.StrDiag method)

 	
 	point() (rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

 	PointDiagram (class in rewalt.diagrams)

 	pos (rewalt.ogposets.El property)

 	pullback() (rewalt.diagrams.Diagram method)

 	pushout() (rewalt.ogposets.OgMapPair method)

R

 	
 	remove() (rewalt.diagrams.DiagSet method)

 	(rewalt.ogposets.GrSet method)

 	rename() (rewalt.diagrams.Diagram method)

 	
 rewalt

 	module

 	
 rewalt.diagrams

 	module

 	
 rewalt.drawing

 	module

 	
 rewalt.hasse

 	module

 	
 rewalt.ogposets

 	module

 	
 	
 rewalt.shapes

 	module

 	
 rewalt.strdiags

 	module

 	rewrite() (rewalt.diagrams.Diagram method)

 	rewrite_steps (rewalt.diagrams.Diagram property)

 	(rewalt.shapes.Shape property)

 	(rewalt.shapes.ShapeMap property)

 	rinvertor (rewalt.diagrams.Diagram property)

 	rotate() (rewalt.drawing.DrawBackend method)

 	runitor() (rewalt.diagrams.Diagram method)

S

 	
 	Shape (class in rewalt.shapes)

 	shape (rewalt.diagrams.Diagram property)

 	ShapeMap (class in rewalt.shapes)

 	shifted() (rewalt.ogposets.El method)

 	Simplex (class in rewalt.shapes)

 	simplex() (rewalt.shapes.Shape static method)

 	simplex_degeneracy() (rewalt.diagrams.SimplexDiagram method)

 	(rewalt.shapes.Simplex method)

 	simplex_face() (rewalt.diagrams.SimplexDiagram method)

 	(rewalt.shapes.Simplex method)

 	
 	SimplexDiagram (class in rewalt.diagrams)

 	size (rewalt.ogposets.OgPoset property)

 	snd (rewalt.ogposets.OgMapPair property)

 	source (rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgMapPair property)

 	StrDiag (class in rewalt.strdiags)

 	subset() (rewalt.ogposets.Closed static method)

 	support (rewalt.ogposets.GrSubset property)

 	suspend() (rewalt.ogposets.OgPoset static method)

 	(rewalt.shapes.Shape static method)

T

 	
 	target (rewalt.ogposets.OgMap property)

 	(rewalt.ogposets.OgMapPair property)

 	terminal() (rewalt.shapes.Shape method)

 	then() (rewalt.ogposets.OgMap method)

 	(rewalt.ogposets.OgMapPair method)

 	(rewalt.shapes.ShapeMap method)

 	
 	theta() (rewalt.shapes.Shape static method)

 	TikZBackend (class in rewalt.drawing)

 	to_gif (class in rewalt.strdiags)

 	to_inputs() (rewalt.diagrams.Diagram method)

 	(rewalt.shapes.Shape method)

 	to_outputs() (rewalt.diagrams.Diagram method)

 	(rewalt.shapes.Shape method)

U

 	
 	underset() (rewalt.ogposets.OgPoset method)

 	union() (rewalt.ogposets.GrSet method)

 	(rewalt.ogposets.GrSubset method)

 	
 	unit() (rewalt.diagrams.Diagram method)

 	update() (rewalt.diagrams.DiagSet method)

W

 	
 	widthgraph (rewalt.strdiags.StrDiag property)

 	
 	wires (rewalt.strdiags.StrDiag property)

 	with_layers() (rewalt.diagrams.Diagram static method)

Y

 	
 	yoneda() (rewalt.diagrams.Diagram static method)

 	(rewalt.diagrams.DiagSet static method)

 _images/notebooks_monoids_55_1.png

_images/notebooks_monoids_55_2.png

_images/notebooks_monoids_51_2.png

_images/notebooks_monoids_55_0.png

_images/notebooks_monoids_59_0.png

_images/notebooks_simplicescubes_36_1.png
E0,0) B1,0)

B1,0)

_images/notebooks_monoids_59_1.png

_images/notebooks_simplicescubes_38_0.png
B1,0) E2,0)

E2,0) B 1)

_images/notebooks_simplicescubes_36_2.png
B1,0) B0, 1)

B1,0)

_images/notebooks_simplicescubes_40_1.png
B 1) BL,2)

E0,0)

B1,0)

B1,0)

_images/notebooks_simplicescubes_40_0.png
E0,0) B 1)

BL,2)

B 1)

B1,0)

_images/notebooks_simplicescubes_49_0.png
a

a

_images/notebooks_simplicescubes_42_0.png
0E12,0)

0BLO” LECY ZEA2 3800 4EL1 S0

TN

0810, 0) 1E10, 1) 2610,2) 310,0)

_images/notebooks_simplicescubes_51_0.png
a

a

a

a

_images/notebooks_simplicescubes_50_0.png
a

a

_images/notebooks_simplicescubes_36_0.png
B0, 1)

E01,0)

E0,0)

_images/notebooks_simplicescubes_34_3.png
E0,2)

B 1)

E0,0)

_images/notebooks_monoids_51_0.png

_images/notebooks_monoids_51_1.png

_images/notebooks_monoids_45_1.png

_images/notebooks_monoids_45_2.png

_images/notebooks_simplicescubes_28_0.png
BL5) B 6)

B4

20 BL,2)

BL3)

B 1)

B1,0)

_images/notebooks_simplicescubes_27_2.png
E2,6) B2, 4)

B2,5)

E2,8) B2,9)

_images/notebooks_simplicescubes_28_2.png
B 6) B4

BL,2)
BL5)

B9

B 8)

B1,0)

_images/notebooks_simplicescubes_28_1.png
B 6)

B4

BL5)
BL,2)

B9

B 1)

B1,0)

_images/notebooks_simplicescubes_34_0.png
BL,2)
B 1)

B1,0)

_images/notebooks_simplicescubes_28_3.png
B4

BL,2)

B 6)

.4
BL5)

B 7)

B 8)

B1,0)

_images/notebooks_simplicescubes_34_2.png
B0, 1)

E01,0)

E0,0)

_images/notebooks_simplicescubes_34_1.png
B0, 1)

E0L,2)

E0,2)

_images/notebooks_simplicescubes_27_0.png
. 9)
2.7 B2,9)

E2,0)

. 2)
2,1 B2,2)

_images/notebooks_simplicescubes_25_0.png
E2,6) B2, 4)

B2,5)

B2,9)

E2,0) .

_images/notebooks_simplicescubes_27_1.png
B2,5) E2.8)

B2,9)

E2,0) 2.7

_images/notebooks_simplicescubes_68_0.png

_images/notebooks_simplicescubes_68_2.png

_images/notebooks_simplicescubes_68_1.png

_images/notebooks_simplicescubes_68_4.png

_images/notebooks_simplicescubes_68_3.png

_images/notebooks_simplicescubes_73_0.png
3. 7)

13,4

3.6

_images/notebooks_simplicescubes_6_0.png
E10,0)
o

_images/notebooks_simplicescubes_74_1.png
B2, 16) B2,19) B12,22)|

E2,0) B2, 18) (E2.23)

B |ee2) |ee2n

_images/notebooks_simplicescubes_74_0.png
.21 (B8 |602,23)

B0 |e@y |Be.2) 3.6

B3 [ee |25

_images/notebooks_simplicescubes_74_2.png
B2.15) |E212) |E2,20

B2, 16) 2,22 (E2.23)

E2,0) B2,19) B2, 18)

_images/notebooks_simplicescubes_60_0.png
B2, 4) B2.3) B2,5)

2.1 B2,2)

_images/notebooks_simplicescubes_58_0.png
BL,2) BL3)

BL,0) B 1)

_images/notebooks_simplicescubes_61_1.png
B 8) B 6)

B 7)

B, 11)

EL,0) .

_images/notebooks_simplicescubes_61_0.png
B 7)

B 8) e

BL5)

BL,2)

B 1)

_images/notebooks_simplicescubes_65_0.png

_images/notebooks_simplicescubes_63_0.png
B3, 6) B35 B3, 4) BG,7)

B3,0) BG,1) B3,2) B33

_images/notebooks_simplicescubes_67_1.png
B2,9) E2,10) B 11)

BT |E26) B2,5)

B8 (e e

_images/notebooks_simplicescubes_67_0.png
8.7 (e |Be.8)

B2 [Bee |e2s)

B0 |eey eep

_images/notebooks_simplicescubes_67_3.png
BR.16 [B1s) [EEA7)

82,12 [BR19 B2 10

B |eee |Ee1)

_images/notebooks_simplicescubes_67_2.png
B2,13) (8212 62,19

BT |E29) B2, 11)

E2,6) E2,10) B s)

_images/notebooks_simplicescubes_51_1.png

_images/notebooks_eckmannhilton_16_0.png

_images/notebooks_eckmannhilton_17_0.png

_images/notebooks_eckmannhilton_15_0.png
B 1)

E2,0)

B1,0)

BL,0) B0, 1)

_images/notebooks_eckmannhilton_15_1.png
B 1)

B 1)

E2,0)

B1,0)

B0, 1)

_images/notebooks_eckmannhilton_22_0.png

_images/notebooks_eckmannhilton_23_0.png

_images/notebooks_eckmannhilton_19_0.png

_images/notebooks_eckmannhilton_20_0.png

_images/notebooks_eckmannhilton_24_0.png

_images/notebooks_monoids_79_0.png

_images/simplicescubes_2.gif
BL5)

2

BL3)

BL6)

B 1)

BL,0)

BL 4

BL,2)

_images/notebooks_eckmannhilton_26_0.png
L

_images/simplicescubes_1.gif
BL5)

2

BL3)

BL6)

B 1)

BL,0)

BL 4

BL,2)

_images/notebooks_monoids_79_2.png

_images/simplicescubes_4.gif

_images/notebooks_monoids_79_1.png

_images/simplicescubes_3.gif

_images/notebooks_presentcategory_10_0.png
compi(g0) #0 (gL))

a

_images/notebooks_monoids_9_0.png

_images/notebooks_monoids_67_0.png

_images/notebooks_stringdiagrams_6_1.png

_images/notebooks_monoids_65_0.png

_images/notebooks_stringdiagrams_6_0.png

_images/notebooks_monoids_74_0.png

_images/readme_1.png

_images/notebooks_monoids_69_0.png

_images/notebooks_stringdiagrams_8_0.png

_images/notebooks_monoids_76_0.png

_images/notebooks_monoids_75_0.png

_images/readme_2.png

_images/notebooks_eckmannhilton_34_0.png

_images/notebooks_eckmannhilton_35_0.png

_images/notebooks_eckmannhilton_32_0.png

_images/notebooks_eckmannhilton_33_0.png

_images/notebooks_eckmannhilton_42_0.png
symmetriser

_images/notebooks_eckmannhilton_5_0.png

_images/notebooks_eckmannhilton_37_0.png

_images/notebooks_eckmannhilton_3_0.png

_images/notebooks_eckmannhilton_6_0.png

_images/notebooks_stringdiagrams_51_1.png

_images/notebooks_monoids_61_0.png

_images/notebooks_stringdiagrams_53_1.png
[

\

_images/notebooks_monoids_59_2.png

_images/notebooks_stringdiagrams_53_0.png

_images/notebooks_monoids_63_1.png

_images/notebooks_stringdiagrams_55_1.png

_images/notebooks_monoids_63_0.png
-

_images/notebooks_stringdiagrams_55_0.png

_images/notebooks_stringdiagrams_42_2.png

_images/notebooks_stringdiagrams_42_1.png

_images/notebooks_stringdiagrams_47_0.png
B1,0)
B 1)

BL3)

BL,2)
B4

_images/notebooks_stringdiagrams_42_3.png

_images/notebooks_stringdiagrams_51_0.png

_images/notebooks_stringdiagrams_49_0.png
11111

_images/notebooks_eckmannhilton_31_0.png

_images/notebooks_monoids_15_0.png

_images/notebooks_monoids_17_0.png

_images/notebooks_monoids_10_0.png

_images/notebooks_monoids_11_0.png

_images/notebooks_monoids_27_0.png

_images/notebooks_monoids_28_0.png

_images/notebooks_monoids_19_0.png

_images/notebooks_monoids_25_0.png

_images/notebooks_simplicescubes_15_0.png
B33 B3,2) B3, 4)

B3,0) BG,1)

_static/img/Shape_to_outputs2.png

_static/img/Shape_to_outputs1.png
El(1,2)

_images/notebooks_simplicescubes_19_0.png
B2.3)

2.4

B2,2)

E2,0) 2.1

_static/img/readme_1.png

_images/notebooks_simplicescubes_17_0.png
.6
B2,5) E2,6)

B2, 4)

B2.3)

B2,2)
2.1

_static/img/Shape_to_outputs3.png
El(1,5)

_images/notebooks_simplicescubes_20_0.png
BL5) B 6)

B4

20 BL,2)

BL3)

B 1)

B1,0)

_static/img/readme_3.png

_images/notebooks_simplicescubes_19_1.png
B2,5)

E2,6)

B2, 4)

B2.3) 2.

_static/img/readme_2.png

_images/notebooks_simplicescubes_20_2.png
B4

BL,2)

B 6)

.4
BL5)

B 7)

B 8)

B1,0)

_images/notebooks_simplicescubes_20_1.png
BL5) B 6) B4 BL,2)

2.4

B3 B 7)

B1,0)

_static/img/readme_4.png
sssssssss

ssssss

_images/notebooks_simplicescubes_12_0.png
B2,2) B2.3)

E2,0) 2.1

_static/img/Shape_to_inputs2.png
El(1,2)

_images/notebooks_simplicescubes_10_0.png
BL,2)
B 1)

B1,0)

_static/img/Shape_to_inputs1.png
El(1,1)

_images/notebooks_simplicescubes_13_1.png
B4 BL,2)

BL3)

BL5)

B1,0)

_images/notebooks_simplicescubes_13_0.png
BL3) B4

BL,2)

B1,0)

_static/img/Shape_to_inputs3.png
El(1,1)

_images/notebooks_eckmannhilton_8_0.png
BL,2)

E2,1)

B 1)

E2,0)

B1,0)

_images/notebooks_eckmannhilton_8_1.png
BL,2)

B4

B1,0)

_images/notebooks_monoids_37_1.png

_images/notebooks_monoids_39_0.png

_images/notebooks_monoids_35_0.png

_images/notebooks_monoids_37_0.png

_images/notebooks_monoids_45_0.png

_images/notebooks_monoids_41_0.png

_images/notebooks_monoids_43_0.png
wwwww

_static/img/OgPoset_arrow.png
0.EI(1,0)

1
0,El(0, 0) LEI0,1)

_images/notebooks_presentcategory_24_0.png

_static/img/Shape_merge1.png
El(1,2)

_images/notebooks_presentcategory_23_0.png
comp(f0) #0 (1))

_static/img/Shape_atom.png
El(1,1)

_images/notebooks_presentcategory_30_0.png

_static/img/Shape_paste_horiz.png
El(1,2)

EI(2,0)

El(1,0)

El(1,3)

SEI2.1)

El(1,1)

_images/notebooks_presentcategory_28_0.png

_static/img/Shape_merge2.png
El(1,3)

El(1,2)

_images/notebooks_presentcategory_9_0.png
comp(70) #0 (1))

_static/img/Shape_paste_vert.png
El(1,2)

P

El(1, 1)

El(2,0)

El(1,0)

_images/notebooks_presentcategory_34_0.png
comp_to_lu

compi(1(+0) #0 (f0))

_static/img/Shape_paste_interchange.png
El(1, 4)

EI(2,2)

El(1,2)

EI(2,0)

El(1,0)

El(1,5)

&El2.3)

El(1,3)

SEI2.1)

El(1,1)

_images/notebooks_presentcategory_17_0.png
o (-

compi(g0) #0 (g1))

a

_static/minus.png

_images/notebooks_presentcategory_15_0.png
compued #0 (1)

_static/file.png

_images/notebooks_presentcategory_21_0.png

_images/notebooks_presentcategory_19_0.png
a

#01gu)

comp(f0) #0 (1))

_static/plus.png

_images/notebooks_presentcategory_22_0.png

_images/notebooks_monoids_32_0.png

_images/notebooks_monoids_33_0.png

_images/notebooks_monoids_30_0.png

nav.xhtml

 Table of Contents

 		
 rewalt

 		
 The theory of monoids

 		
 Adding the sorts and operations

 		
 Adding “oriented equations”

 		
 Making the equations go both ways

 		
 Computing with diagrammatic rewrites

 		
 Generating string diagrams

 		
 A presentation of adjunctions

 		
 Customising string diagrams

 		
 Fun with higher-dimensional shapes

 		
 Exploring simplices and cubes

 		
 Oriented simplices

 		
 Maps of simplices

 		
 Constructing a simplicial set

 		
 Oriented cubes

 		
 Maps of cubes

 		
 Constructing a cubical set

 		
 Mixing them together

 		
 The Eckmann–Hilton argument

 		
 First braiding

 		
 Second braiding

 		
 Presenting a category

 		
 Adding all objects and morphisms

 		
 Adding compositors

 		
 Composites involving units

 		
 diagrams

 		
 diagrams.DiagSet

 		
 diagrams.Diagram

 		
 diagrams.SimplexDiagram

 		
 diagrams.CubeDiagram

 		
 diagrams.PointDiagram

 		
 shapes

 		
 shapes.Shape

 		
 shapes.ShapeMap

 		
 shapes.Simplex

 		
 shapes.Cube

 		
 ogposets

 		
 ogposets.OgPoset

 		
 ogposets.OgMap

 		
 ogposets.El

 		
 ogposets.GrSet

 		
 ogposets.GrSubset

 		
 ogposets.Closed

 		
 ogposets.OgMapPair

 		
 strdiags

 		
 strdiags.StrDiag

 		
 strdiags.draw

 		
 strdiags.draw_boundaries

 		
 strdiags.to_gif

 		
 hasse

 		
 hasse.Hasse

 		
 hasse.draw

 		
 drawing

 		
 drawing.DrawBackend

 		
 drawing.MatBackend

 		
 drawing.TikZBackend

_images/OgPoset_arrow.png
0.EI(1,0)

1
0,El(0, 0) LEI0,1)

_images/Shape_atom.png
El(1,1)

_images/Shape_merge1.png
El(1,2)

_images/Shape_merge2.png
El(1,3)

El(1,2)

_images/Shape_paste_vert.png
El(1,2)

P

El(1, 1)

El(2,0)

El(1,0)

_images/Shape_to_inputs1.png
El(1,1)

_images/Shape_paste_horiz.png
El(1,2)

EI(2,0)

El(1,0)

El(1,3)

SEI2.1)

El(1,1)

_images/Shape_paste_interchange.png
El(1, 4)

EI(2,2)

El(1,2)

EI(2,0)

El(1,0)

El(1,5)

&El2.3)

El(1,3)

SEI2.1)

El(1,1)

_images/Shape_to_outputs1.png
El(1,2)

_images/Shape_to_outputs2.png

_images/Shape_to_inputs2.png
El(1,2)

_images/Shape_to_inputs3.png
El(1,1)

_images/notebooks_stringdiagrams_36_2.png

_images/notebooks_stringdiagrams_36_1.png

_images/notebooks_stringdiagrams_42_0.png

_images/notebooks_stringdiagrams_40_0.png

_images/notebooks_stringdiagrams_25_0.png

_images/notebooks_stringdiagrams_22_0.png
a2

_images/notebooks_stringdiagrams_29_0.png

_images/notebooks_stringdiagrams_27_0.png

_images/notebooks_stringdiagrams_33_0.png

_images/notebooks_stringdiagrams_31_0.png

_images/notebooks_stringdiagrams_36_0.png

_images/eckmannhilton_1.gif

_images/eckmannhilton_2.gif

_images/Shape_to_outputs3.png
El(1,5)

_images/notebooks_eckmannhilton_10_0.png

_images/notebooks_eckmannhilton_10_1.png
-

_images/monoids_1.gif

_images/monoids_2.gif

_images/notebooks_eckmannhilton_13_1.png
B 1)
E0,0)
E2,0)

B1,0)

B1,0)

_images/notebooks_eckmannhilton_11_0.png

_images/notebooks_eckmannhilton_13_0.png
E0,0) B 1)

B 1)

E2,0)

B1,0)

_images/notebooks_stringdiagrams_16_0.png

_images/notebooks_stringdiagrams_20_0.png

_images/notebooks_stringdiagrams_18_0.png

_images/notebooks_simplicescubes_8_0.png
B0, 1)

E01,0)

E0,0)

_images/notebooks_simplicescubes_93_0.png
)
B 6) B 7)

BL5)

B4

B 1)
B1,0)

_images/notebooks_simplicescubes_92_0.png
B2.3) B2, 4)

2.1 B2,2)

_images/notebooks_simplicescubes_95_0.png
B2.3) B2, 4)

B2,2) 2.1

_images/notebooks_simplicescubes_93_1.png
B 7) BL5)

B 6)

B 8)

BL,0) B 1)

_images/notebooks_simplicescubes_96_1.png
6
BL5) B 6)

B4

B 7)

B1,0)

_images/notebooks_simplicescubes_96_0.png
B4

BL5)

BL3)

B1,0)

BL,2)

B 6)

_images/notebooks_stringdiagrams_12_0.png

_images/notebooks_stringdiagrams_10_0.png

_images/notebooks_stringdiagrams_14_0.png
<l

_images/notebooks_simplicescubes_79_0.png
B0, 1)

E01,0)

E0,0)

_images/notebooks_simplicescubes_74_3.png
ERU CR VR PRt

2,16 |B215) (602,12 13.7)

82,200 [B12,22) |E2,23)

_images/notebooks_simplicescubes_79_2.png
E0,3)

E0L,2)

E0,0)

_images/notebooks_simplicescubes_79_1.png
E0,2)

B0, 3)

E0,3)

_images/notebooks_simplicescubes_81_0.png
E0,0) B1,0)

BL,0) B0, 1)

_images/notebooks_simplicescubes_79_3.png
E0,2)

B 1)

B0, 1)

_images/notebooks_simplicescubes_82_0.png
E0,0) B1,0)

E0,0) B1,0)

_images/notebooks_simplicescubes_81_1.png
B1,0) B0, 1)

E0,0) B1,0)

_images/notebooks_simplicescubes_85_0.png

_images/notebooks_simplicescubes_82_1.png
B1,0) B0, 1)

BL,0) B0, 1)

