
rewalt
Release 0.1.0

Amar Hadzihasanovic

Sep 15, 2022





NOTEBOOKS

1 Installation 3

2 Getting started 5

3 Further reading 7

4 License 9

5 Contributing 11
5.1 The theory of monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 Adding the sorts and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 Adding “oriented equations” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 Making the equations go both ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Computing with diagrammatic rewrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Generating string diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 A presentation of adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Customising string diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Fun with higher-dimensional shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Exploring simplices and cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Oriented simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 Maps of simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Constructing a simplicial set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.4 Oriented cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.5 Maps of cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.6 Constructing a cubical set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.7 Mixing them together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 The Eckmann–Hilton argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.1 First braiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Second braiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Presenting a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.1 Adding all objects and morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.2 Adding compositors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.3 Composites involving units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.1 diagrams.DiagSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.2 diagrams.Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.3 diagrams.SimplexDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6.4 diagrams.CubeDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.5 diagrams.PointDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

i



5.7.1 shapes.Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.7.2 shapes.ShapeMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.7.3 shapes.Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.7.4 shapes.Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.8 ogposets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.8.1 ogposets.OgPoset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.8.2 ogposets.OgMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.8.3 ogposets.El . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.8.4 ogposets.GrSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.8.5 ogposets.GrSubset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.8.6 ogposets.Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.8.7 ogposets.OgMapPair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9 strdiags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.9.1 strdiags.StrDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.9.2 strdiags.draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.9.3 strdiags.draw_boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.9.4 strdiags.to_gif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.10 hasse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.10.1 hasse.Hasse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.10.2 hasse.draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.11 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.11.1 drawing.DrawBackend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.11.2 drawing.MatBackend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.11.3 drawing.TikZBackend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6 Indices and tables 199

Python Module Index 201

Index 203

ii



rewalt, Release 0.1.0

1. (archaic) to overturn, throw down

2. a library for rewriting, algebra, and topology, developed in Tallinn (aka Reval)

rewalt is a toolkit for higher-dimensional diagram rewriting, with applications in

• higher and monoidal category theory,

• homotopical algebra,

• combinatorial topology,

and more. Thanks to its visualisation features, it can also be used as a structure-aware string diagram editor, supporting
TikZ output so the string diagrams can be directly embedded in your LaTeX files.

It implements diagrammatic sets which, by the “higher-dimensional rewriting” paradigm, double as a model of

• higher-dimensional rewrite systems, and of

NOTEBOOKS 1

https://tikz.net/
https://arxiv.org/abs/2007.14505


rewalt, Release 0.1.0

• directed cell complexes.

This model is “topologically sound”: a diagrammatic set built in rewalt presents a finite CW complex, and a diagram
constructed in the diagrammatic set presents a valid homotopy in this CW complex.

A diagrammatic set can be seen as a generalisation of a simplicial set or of a cubical set with many more “cell shapes”.
As a result, rewalt also contains a full implementation of finitely presented simplicial sets and cubical sets with
connections.

2 NOTEBOOKS



CHAPTER

ONE

INSTALLATION

rewalt is available for Python 3.7 and higher. You can install it with the command

pip install rewalt

If you want the bleeding edge, you can check out the GitHub repository.

3

https://github.com/ahadziha/rewalt


rewalt, Release 0.1.0

4 Chapter 1. Installation



CHAPTER

TWO

GETTING STARTED

To get started, we recommend you check the Notebooks, which contain a number of worked examples from category
theory, algebra, and homotopy theory.

5

notebooks/monoids.html


rewalt, Release 0.1.0

6 Chapter 2. Getting started



CHAPTER

THREE

FURTHER READING

For a first introduction to the ideas of higher-dimensional rewriting, diagrammatic sets, and “topological soundness”,
you may want to watch these presentations at the CIRM meeting on Higher Structures and at the GETCO 2022 confer-
ence.

A nice overview of the general landscape of higher-dimensional rewriting is Yves Guiraud’s mémoire d’habilitation.

So far there are two papers on the theory of diagrammatic sets: the first one containing the foundations, the second one
containing some developments applied to categorical universal algebra.

A description and complexity analysis of some of the data structures and algorithms behind rewalt will be published
in the proceedings of ACT 2022.

7

https://cirmbox.cirm-math.fr/s/8a8DXyFA4bzaSNF
https://youtu.be/UlVZPiJ87kw
https://youtu.be/UlVZPiJ87kw
https://webusers.imj-prg.fr/~yves.guiraud/articles/hdr.pdf
https://arxiv.org/abs/2007.14505
https://arxiv.org/abs/2101.10361
https://msp.cis.strath.ac.uk/act2022/


rewalt, Release 0.1.0

8 Chapter 3. Further reading



CHAPTER

FOUR

LICENSE

rewalt is distributed under the BSD 3-clause license.

9



rewalt, Release 0.1.0

10 Chapter 4. License



CHAPTER

FIVE

CONTRIBUTING

Currently, the only active developer of rewalt is Amar Hadzihasanovic.

Contributions are welcome. Please reach out either by sending me an email, or by opening an issue.

5.1 The theory of monoids

In this notebook, we will construct a presentation of the theory of monoids or associative algebras in rewalt. Depend-
ing on your favourite gadget, you may see this as the data presenting a monoidal category (PRO) or an operad.

5.1.1 Adding the sorts and operations

Let’s first import rewalt and create an empty diagrammatic set — an object of class DiagSet— that we will call Mon.

[1]: import rewalt

Mon = rewalt.DiagSet()

You know how a monoidal category can be seen as a one-object bicategory (its delooping)? This is how we do it in
rewalt too: the sorts of a monoidal theory are 1-cells going to and from a single 0-cell.

So first of all, we add a single 0-dimensional generator to our diagrammatic set.

[2]: pt = Mon.add('pt')

This adds a 0-dimensional generator to Mon, assigns it the name 'pt' and returns the Diagram object that “picks” that
generator only; we assign this diagram to the variable pt.

Next, we add a single 1-dimensional generator, corresponding to the single sort of our theory.

[3]: a = Mon.add('a', pt, pt)

The two extra arguments that we gave to add specify the input, or source boundary of the new generator, and the output,
or target boundary of the new generator, respectively. In this case they are both equal to the unique “point”.

By the way, if you fail to assign the output of add to a variable, you can always retrieve it later by giving the generator’s
name to Mon’s indexer.

[4]: assert a == Mon['a']

11

https://ioc.ee/~amar
https://github.com/ahadziha/rewalt/issues/new
https://ncatlab.org/nlab/show/delooping#deloopings_of_higher_categorical_structures


rewalt, Release 0.1.0

There is not much that we can do with 0-cells. . . but with 1-cells, we can create larger diagrams by pasting.

The paste method pastes together diagrams along the k-dimensional output boundary of one and the k-dimensional
input boundary of the other, when these match each other.

For a 1-cell, the only non-trivial boundary is the 0-dimensional one; pasting along it corresponds to “concatenation of
paths”. We can concatenate a to itself as many times as we want. Let’s also visualise the result as a “1-dimensional
string diagram”.

[5]: a.draw()

nbsphinx-code-borderwhite

[6]: a.paste(a).draw()

nbsphinx-code-borderwhite

[7]: a.paste(a).paste(a).draw()

12 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

And so on. Note that paste can also take an integer argument specifying the dimension of the boundary along which
to paste; it defaults to the minimum of the two diagrams’ dimensions, minus 1. In this case the minimum of 1 and 1 is
1, which minus 1 equals 0, and that’s the boundary we want.

Now that we have the sorts, let’s add the operations. The monoid multiplication takes two inputs and returns one output.
This corresponds to a 2-dimensional generator, whose input is a.paste(a), and output a.

[8]: m = Mon.add('m', a.paste(a), a)

And let’s picture this as a string diagram.

[9]: m.draw()

nbsphinx-code-borderwhite

(As you can see, string diagrams by default go from bottom to top. If you prefer left-to-right, or top-to-bottom, or
right-to-left orientation, you can pass it as an argument to draw; or to change the default setting, reassign rewalt.
strdiags.DEFAULT['orientation'].)

5.1. The theory of monoids 13



rewalt, Release 0.1.0

[10]: m.draw(orientation='lr')

nbsphinx-code-borderwhite

Since we have a single sort, it is a little pointless to label the wires. Same for labelling the unique point. Let’s switch
labels off for these generators.

[11]: Mon.update('a', draw_label=False)
Mon.update('pt', draw_label=False)
m.draw()

nbsphinx-code-borderwhite

Next, we want to add the monoid unit, which is a “nullary” operation. Here things get a little more subtle.

Cells in rewalt are not allowed to have “strictly lower-dimensional” inputs or outputs: if we try to add a 2-dimensional
generator whose input is a 0-dimensional diagram, we will get an error.

[12]: try:
(continues on next page)

14 Chapter 5. Contributing



rewalt, Release 0.1.0

(continued from previous page)

u = Mon.add('u', pt, a)
except ValueError:

print('Nope')

Nope

Instead, we have to use “weak units”, in the form of degenerate diagrams. (This may seem like a hassle in dimension
2, where “everything can be strictified”, but pays off in higher dimensions.)

A simple constructor for degenerate diagrams is the unit method, which creates a “unit diagram”, one dimension
higher.

[13]: assert pt.dim == 0
assert not pt.isdegenerate

assert pt.unit().dim == 1
assert pt.unit().isdegenerate

So to add the monoid unit, we make pt.unit() its input.

In string diagrams, degenerate cells are represented as translucent wires (when wires), or as “node-less nodes” (when
nodes).

[14]: u = Mon.add('u', pt.unit(), a)
u.draw()

nbsphinx-code-borderwhite

5.1. The theory of monoids 15



rewalt, Release 0.1.0

5.1.2 Adding “oriented equations”

Now we can compose diagrams with paste in two directions, along the 0-boundary (“horizontally”) or the 1-boundary
(“vertically”). . .

[15]: u.paste(m, 0).draw() # "horizontal" pasting

nbsphinx-code-borderwhite

[16]: u.paste(m, 0).paste(m).draw() # ...and now "vertical" pasting

nbsphinx-code-borderwhite

A useful alternative to paste (especially in an “operadic” setting) are the methods to_inputs and to_outputs,
which allow us to paste a diagram only to some inputs and outputs of another diagram.

To use these in practice, one must know that every node and wire in a string diagram have a unique position. We
can use the keyword arguments positions (both nodes and wires), nodepositions, and wirepositions to enable
positions in string diagram output.

16 Chapter 5. Contributing



rewalt, Release 0.1.0

[17]: m.draw(positions=True)

nbsphinx-code-borderwhite

Now, we can paste another multiplication either to the input in position 0, or the input in position 1.

[18]: m.to_inputs(0, m).draw()

nbsphinx-code-borderwhite

[19]: m.to_inputs(1, m).draw()

5.1. The theory of monoids 17



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

These two diagrams happen to be the two sides of the associativity equation, so let’s add this equation to our presenta-
tion!

Or rather, we add an oriented associativity equation, or associativity rewrite, or “associator”, as a 3-dimensional gen-
erator. All the cells in diagrammatic sets have a direction.

[20]: assoc = Mon.add('assoc', m.to_inputs(0, m), m.to_inputs(1, m))
assoc.draw()

nbsphinx-code-borderwhite

You can see that, when we draw a 3-dimensional diagram, we obtain a “2-dimensional slice” string diagram, where
nodes correspond to 3-cells and wires to 2-cells. (In general, for an n-dimensional diagram, nodes are n-dimensional
cells and wires are (n-1)-dimensional cells).

Here, assoc is a 3-dimensional cell that has two m 2-cells in its input, and two m 2-cells in its output.

To see the two “sides” of the rewrite, we can either use the draw_boundariesmethod, or first call input/output and

18 Chapter 5. Contributing



rewalt, Release 0.1.0

only then draw.

[21]: assoc.draw_boundaries()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

Next, let’s add left unitality and right unitality equations/rewrites. The left-hand side of the left unitality equation is
this.

[22]: m.to_inputs(0, u).draw()

5.1. The theory of monoids 19



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

This diagram is supposed to be equal to “the identity operation” on our sort (which would be the unit on a). . . but not
quite, because it contains a weak unit in the input; instead we want to equate to another degenerate cell called the left
unitor on a. We build it like this.

[23]: a.lunitor('-').draw()

nbsphinx-code-borderwhite

The argument '-' specifies that the unit should appear in the input, and not the output.

Now we can add the “left unitality” generator.

[24]: lunit = Mon.add('lunit', m.to_inputs(0, u), a.lunitor('-'))
lunit.draw()

20 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

We proceed similarly for the “right unitality” generator.

[25]: runit = Mon.add('runit', m.to_inputs(1, u), a.runitor('-'))
runit.draw()
runit.draw_boundaries()

nbsphinx-code-borderwhite

5.1. The theory of monoids 21



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.1.3 Making the equations go both ways

That’s it, we now have a presentation of the theory of monoids!

Except our “equations” are really directed rewrites. What if we want to use them in both directions? Luckily, we have
methods for “weakly inverting” a generator. Let’s try it on assoc.

[26]: Mon.invert('assoc')

[26]: (<rewalt.diagrams.Diagram at 0x7f72f7faf100>,
<rewalt.diagrams.Diagram at 0x7f72f7faeb60>,
<rewalt.diagrams.Diagram at 0x7f72f843f250>)

This returned 3 diagrams, which corresponds to the fact that 3 new generators were added. Let’s see what happened.
We can see a list of the generators, ordered by dimension, with the DiagSet method by_dim.

22 Chapter 5. Contributing



rewalt, Release 0.1.0

[27]: Mon.by_dim

[27]: {0: {'pt'},
1: {'a'},
2: {'m', 'u'},
3: {'assoc', 'assoc¹', 'lunit', 'runit'},
4: {'inv(assoc, assoc¹)', 'inv(assoc¹, assoc)'}}

So, first of all, there’s a new 3-dimensional generator, assoc1.

[28]: Mon['assoc1'].draw()
Mon['assoc1'].draw_boundaries()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.1. The theory of monoids 23



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

This is the “weak inverse” of assoc: a generator with the same boundaries as assoc, but going in the reverse direction.
If a generator has a weak inverse, we can get it with the inverse attribute.

[29]: assert assoc.inverse == Mon['assoc1']

Then, we have two new 4-dimensional generators, inv(assoc, assoc1) and inv(assoc1, assoc).

[30]: Mon['inv(assoc, assoc1)'].draw()
Mon['inv(assoc, assoc1)'].draw_boundaries()

nbsphinx-code-borderwhite

24 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

This generator “exhibits” the fact that assoc1 is a right inverse (right in diagrammatic order; left in composition order)
for assoc: it goes from the pasting of assoc and assoc1, to a weak unit on the input of assoc.

We call this a right invertor for assoc, and can get it with the rinvertor attribute.

Similarly, inv(assoc, assoc1) exhibits the fact that assoc1 is a left inverse for assoc. We call this a left invertor
for assoc, and can retrieve it with the linvertor attribute.

Note that the left invertor for assoc is the right invertor for assoc1, and vice versa!

[31]: assert assoc.rinvertor == Mon['inv(assoc, assoc1)']
assert assoc.linvertor == assoc.inverse.rinvertor

In the theory of diagrammatic sets, these two “witnesses” should, themselves, be weakly invertible cells; since this
would require an infinite number of generators, we leave it to the user to invert them when/if needed.

5.1. The theory of monoids 25

https://arxiv.org/abs/2007.14505


rewalt, Release 0.1.0

[32]: Mon['inv(assoc1, assoc)'].draw()
Mon['inv(assoc1, assoc)'].draw_boundaries()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

26 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

5.1.4 Computing with diagrammatic rewrites

Let’s start using our presentation to make some diagrammatic computations. First, we create a 2-dimensional diagram.

[33]: start = m.to_inputs(0, m).to_inputs(0, m)
start.draw(nodepositions=True)

nbsphinx-code-borderwhite

In traditional algebraic notation, this would correspond to the term 𝑚(𝑚(𝑚(𝑥, 𝑦), 𝑧), 𝑤).

We see that we can apply an associativity rewrite/equation in two places, corresponding to the nodes in positions (0, 1)
and to the nodes in positions (1, 2).

We can “apply rewrites” with the rewrite method. The result of rewrite is not going to be the “rewritten” 2-
dimensional diagram. Instead, it will be a 3-dimensional diagram whose input is the original diagram, and output is
the rewritten diagram: an “embodiment” of the rewrite operation.

5.1. The theory of monoids 27



rewalt, Release 0.1.0

(The rewrite method is, in fact, a special instance of to_outputs; once you understand the principles of higher-
dimensional rewriting, you should be able to see why).

[34]: rew1 = start.rewrite([0,1], assoc)
rew1.draw()
rew1.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

In the rewritten diagram, we can only apply assoc to the nodes (0, 2).

[35]: rew2 = rew1.output.rewrite([0, 2], assoc)
rew2.output.draw(nodepositions=True)

28 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Now, we can apply assoc to the nodes (1, 2).

[36]: rew3 = rew2.output.rewrite([1, 2], assoc)
rew3.output.draw()

nbsphinx-code-borderwhite

We cannot apply assoc anywhere else. (Of course we could start applying assoc1).

Let’s put together our sequence of rewrites.

[37]: seq1 = rewalt.Diagram.with_layers(rew1, rew2, rew3)
seq1.draw()

5.1. The theory of monoids 29



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

(We could have equally defined seq1 as rew1.paste(rew2).paste(rew3)).

We can use the method rewrite_steps to get all our rewrite steps. . . and we can even produce a little gif animation
with all the steps. (We’ll make it loop backwards as well so it doesn’t end too soon.)

[38]: rewalt.strdiags.to_gif(*seq1.rewrite_steps, loop=True, path='monoids_1.gif')

Let’s go back to the start and pick a different rewrite, the one on nodes (1, 2).

[39]: rew4 = start.rewrite([1, 2], assoc)
rew4.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

30 Chapter 5. Contributing



rewalt, Release 0.1.0

[40]: rew5 = rew4.output.rewrite([0, 2], assoc)
rew5.output.draw()

nbsphinx-code-borderwhite

[41]: seq2 = rew4.paste(rew5)
seq2.draw()
rewalt.strdiags.to_gif(*seq2.rewrite_steps, loop=True, path='monoids_2.gif')

nbsphinx-code-borderwhite

You can see that seq1 and seq2 are two different sequences of rewrites with the same starting and ending point.

If you are familiar with the characterisation of monoidal categories as pseudomonoids in the monoidal 2-category of
categories with cartesian product, you may recognise the two sides of Mac Lane’s pentagon equation!

Indeed, we can add a 4-dimensional generator between the two, embodying Mac Lane’s pentagon.

5.1. The theory of monoids 31



rewalt, Release 0.1.0

[42]: pentagon = Mon.add('pentagon', seq1, seq2)
pentagon.draw()
pentagon.draw_boundaries()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

32 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

We could go on and add generators corresponding to Mac Lane’s triangle. . . but this was supposed to be about the
theory of monoids, not of lax or pseudomonoids, so let’s stop here instead.

5.2 Generating string diagrams

For any higher-dimensional diagram that we can create in rewalt, we can output a string diagram representation both
as an image (with the Matplotlib backend), or as TikZ code that we can include in our LaTeX files.

Thus, one of the intended applications of rewalt is also to be a structure-aware, type-aware string diagram generator:
we can build our string diagrams the way we build the morphisms/homotopies/operations/rewrites that they represent,
and let rewalt do the typesetting for us.

In this notebook, we will work out one example, and explore the customisation options that we have.

Note that the placement and general style of nodes and wires is not currently customisable (except for the choice of
orientation). However, rewalt is open source software and everyone is welcome to modify the algorithm to suit their
aesthetic preferences.

5.2.1 A presentation of adjunctions

As an example, we will construct a presentation of the “theory of adjunctions”, or “walking adjunction”, whose models
in a bicategory are adjunctions internal to that bicategory. (This has “dualities in monoidal categories” as a special
case.) The triangle/zigzag/snake equations of adjunctions are some of the most well-known and recognisable in string
diagrams.

The theory of adjunctions has two 0-cells and two 1-cells between them, going in opposite directions.

[1]: import rewalt

Adj = rewalt.DiagSet()
x = Adj.add('x')
y = Adj.add('y')

(continues on next page)

5.2. Generating string diagrams 33



rewalt, Release 0.1.0

(continued from previous page)

l = Adj.add('l', x, y)
r = Adj.add('r', y, x)

Then, we need to add two 2-cells, the unit and counit of the adjunction.

[2]: eta = Adj.add('', x.unit(), l.paste(r)) # unit
eps = Adj.add('', r.paste(l), y.unit()) # counit

This is how rewalt draws the unit and counit by default.

[3]: eta.draw()
eps.draw()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

We can use the picture as a visual aid to see how to paste the unit and counit together to get the left-hand side of the
triangle equations. For example, if we add an l to the right of eta. . .

34 Chapter 5. Contributing



rewalt, Release 0.1.0

[4]: eta.paste(l).draw(wirepositions=True)

nbsphinx-code-borderwhite

. . . we can plug an eps to the wires in positions (3, 1).

[5]: lhs1 = eta.paste(l).to_outputs([3, 1], eps)
lhs1.draw()

nbsphinx-code-borderwhite

This needs to be equated to “the identity on l”, except we have weak units on x in the input and on y in the output.

We can in fact obtain the degenerate 2-cell with the right type as one of the cubical degeneracies on l.

[6]: rhs1 = l.cube_degeneracy(1)
rhs1.draw()

5.2. Generating string diagrams 35



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

We can now add our first “oriented equation”.

[7]: eq1 = Adj.add('eq1', lhs1, rhs1)
eq1.draw()

nbsphinx-code-borderwhite

For the second one, we can proceed symmetrically. We add an r to the left of eta. . .

[8]: r.paste(eta).draw(wirepositions=True)

36 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

. . . and we plug an eps to the wires in positions (0, 2) to get the left-hand side of the second equation.

[9]: lhs2 = r.paste(eta).to_outputs([0, 2], eps)
lhs2.draw()

nbsphinx-code-borderwhite

To get the right-hand-side, we use a different cubical degeneracy on r.

[10]: rhs2 = r.cube_degeneracy(0)
rhs2.draw()

5.2. Generating string diagrams 37



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

And finally, we add the second triangle equation.

[11]: eq2 = Adj.add('eq2', lhs2, rhs2)
eq2.draw()

nbsphinx-code-borderwhite

That’s it, we have a presentation. (We could also invert eq1 and eq2 but that’s besides the point of this exercise).

38 Chapter 5. Contributing



rewalt, Release 0.1.0

5.2.2 Customising string diagrams

Let’s return to the first triangle equation. The default string diagram representation of its left-hand side is this.

[12]: eq1.input.draw()

nbsphinx-code-borderwhite

Let’s make it a bit nicer.

First of all, it is quite common to draw units and counits as “bent wires” (aka “cups and caps”), without a node, so that
the triangle equations look like topological trivialities.

We can do this by disabling node drawing for these generators of Adj.

[13]: Adj.update('', draw_node=False)
Adj.update('', draw_node=False)
eq1.input.draw()

nbsphinx-code-borderwhite

5.2. Generating string diagrams 39



rewalt, Release 0.1.0

Then, since we have only two 1-cells, why not also colour-code them?

[14]: Adj.update('l', color='blue')
Adj.update('r', color='magenta')
eq1.input.draw()

nbsphinx-code-borderwhite

When we are working in rewalt, it is good to see the weak units, because we need to take them into account to know
that everything typechecks.

However, we may want to “hide them away” if, for example, our diagrams are to be interpreted in a strict 2-category.
We can do this by changing the alpha factor for degenerate wires to 0.

[15]: eq1.input.draw(degenalpha=0)

nbsphinx-code-borderwhite

Note that this still shows the weak unit labels, which is actually helpful in this setting because it reminds us of the type
of l and r. If we wanted to get rid of them, we could deactivate labels for these generators.

40 Chapter 5. Contributing



rewalt, Release 0.1.0

[16]: Adj.update('x', draw_label=False)
Adj.update('y', draw_label=False)
eq1.input.draw(degenalpha=0)

nbsphinx-code-borderwhite

[17]: Adj.update('x', draw_label=True)
Adj.update('y', draw_label=True)

There are different factions on what the “correct” orientation of string diagrams is. In rewalt, the default is bottom-
to-top, but it can be changed.

[18]: eq1.input.draw(degenalpha=0, orientation='lr')
eq1.input.draw(degenalpha=0, orientation='rl')
eq1.input.draw(degenalpha=0, orientation='tb')

nbsphinx-code-borderwhite

5.2. Generating string diagrams 41



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

We can change the default settings by reassigning the values of rewalt.strdiags.DEFAULT. Let’s say we want all
our string diagrams to be top-to-bottom with no degenerate wires.

[19]: rewalt.strdiags.DEFAULT['orientation'] = 'tb'
rewalt.strdiags.DEFAULT['degenalpha'] = 0

Now, how about a dark theme?

[20]: Adj.update('l', color='cyan')
eq1.input.draw(bgcolor='0.2', fgcolor='white')

42 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Let’s see what the sides of our two triangle equations look like now.

[21]: eq1.draw_boundaries(bgcolor='0.2', fgcolor='white')
eq2.draw_boundaries(bgcolor='0.2', fgcolor='white')

nbsphinx-code-borderwhite

5.2. Generating string diagrams 43



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

44 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

If we are happy with the look, we can output TikZ code. Note that both labels and colour settings are passed to the
TikZ output as they are, so we should change the background colour setting to something that LaTeX can recognise.

TikZ output uses coordinates in [0, 1] × [0, 1]. Since this is quite small, the output is scaled 3x by default; this can be
changed with the scale, xscale, and yscale keyword arguments.

Also, by default, all wires are drawn with a contour, which is useful in higher dimensions when wires can overlap.
Since we are in 2d and this doesn’t happen, we can avoid drawing contours by setting the depth keyword argument to
False.

[22]: eq1.input.draw(
bgcolor='darkgray', fgcolor='white', depth=False,
tikz=True, xscale=8, yscale=6, path='stringdiagrams_1.tex')

Here’s the generated TikZ code and the output PDF compiled with pdflatex.

5.2.3 Fun with higher-dimensional shapes

We can have string diagram representations not only of “diagrams in a DiagSet”, but also of shapes and maps of
shapes of diagrams.

For example, this is the shape of the diagram we have been using as example.

[23]: eq1.input.shape.draw()

5.2. Generating string diagrams 45

stringdiagrams_1.tex


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Every wire and node corresponds to a unique face of the diagram shape, specified by its dimension (2 for nodes, 1 for
wires) and position. We can match them to elements of the oriented face poset of the diagram shape.

[24]: eq1.input.shape.hasse(labels=False)

nbsphinx-code-borderwhite

A quick way to get some interesting higher-dimensional diagrams, and see some of the things that happen with string
diagram representations in higher dimensions, is to use some of the constructors for special higher-dimensional shapes,
such as simplices and cubes.

For example, these are the string diagrams for the 3-dimensional boundaries of the oriented 4-cube.

[25]: tesseract = rewalt.Shape.cube(4)
tesseract.draw_boundaries(labels=False)

46 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

You can see that wires can cross each other in 3-dimensional diagrams.

For something even more complicated, let’s look at a cubical connection map on the 4-cube, which is a surjective map
from the 5-cube.

(Since this will contain many degenerate cells, we will reinstate weak units in string diagrams.)

[26]: connection = tesseract.cube_connection(1, '-')
connection.draw_boundaries(labels=False, degenalpha=0.1)

5.2. Generating string diagrams 47



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

And let’s play a little bit with colours.

[27]: connection.draw_boundaries(
labels=False, bgcolor='0.2', fgcolor='0.9', degenalpha=0.4,
nodecolor='gold', nodestroke='white')

48 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

Looks nice, no?

5.3 Exploring simplices and cubes

Diagrammatic sets — the structure implemented by rewalt’s DiagSet class — support a wide variety of “shapes of
diagrams”, while remaining “topologically sound”. This makes them a convenient tool for diagrammatic reasoning in
higher category, higher algebra, and homotopy theory.

Among these shapes are some subclasses that are widely used on their own: in particular, the simplices and the cubes.
Indeed, both simplicial sets and cubical sets with connections are special instances of diagrammatic sets (their cate-
gories are full subcategories of the category of diagrammatic sets).

Reflecting this, rewalt contains a full implementation of (finitely presented) simplicial sets and of (finitely presented)
cubical sets with connections. These are nothing more than diagrammatic sets whose generators all have simplicial and

5.3. Exploring simplices and cubes 49

https://ncatlab.org/nlab/show/simplicial+set
https://ncatlab.org/nlab/show/connection+on+a+cubical+set


rewalt, Release 0.1.0

cubical shapes! The Diagram objects that have simplicial or cubical shapes come with special methods for constructing
simplicial and cubical faces, degeneracies, and connections.

Since all our shapes have a “globular” orientation (half a boundary is “input”, half a boundary is “output”), our simplices
are in fact Street’s oriented simplices. Similarly our cubes are “oriented” as in cubical -categories.

Understanding higher-dimensional oriented simplices and cubes can be difficult. In this notebook, we will try to use
rewalt and its visualisation methods to get a grip on some low-but-not-too-low-dimensional examples.

5.3.1 Oriented simplices

Oriented simplices of any dimension are built with the Shapes.simplex constructor. Let’s start with the lowest
possible dimension: -1.

[1]: import rewalt

empty = rewalt.Shape.simplex(-1)

This is just the empty diagram shape.

[2]: len(empty)

[2]: 0

The 0-dimensional simplex is a point.

[3]: point = rewalt.Shape.simplex(0)
point.draw()

nbsphinx-code-borderwhite

The 1-dimensional oriented simplex is an arrow.

[4]: arrow = rewalt.Shape.simplex(1)
arrow.draw()

50 Chapter 5. Contributing

https://ncatlab.org/nlab/show/oriental
https://arxiv.org/abs/math/0007009


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Things get a little more interesting in dimension 2. The oriented 2-simplex is a triangle with two output sides and one
input side. In string diagrams, it is, for example, the shape of a comonoid comultiplication.

[5]: triangle = rewalt.Shape.simplex(2)
triangle.draw()

nbsphinx-code-borderwhite

Let’s go one dimension higher. The oriented 3-simplex is a tetrahedron with two output faces and two input faces, each
of them shaped as an oriented 2-simplex.

Let’s draw both its top-dimensional “slice” string diagram, and its input and output boundaries.

[6]: tetrahedron = rewalt.Shape.simplex(3)
tetrahedron.draw()

5.3. Exploring simplices and cubes 51



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[7]: tetrahedron.draw_boundaries()

nbsphinx-code-borderwhite

52 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

If we stick to the interpretation of the oriented 2-simplex as “the shape of a comultiplication”, then the oriented 3-
simplex is “the shape of a (co)associativity equation”, or “the shape of a coassociator”!

What happens if we go to dimension 4?

[8]: pentachoron = rewalt.Shape.simplex(4)
pentachoron.draw()

nbsphinx-code-borderwhite

This is a pentachoron, also known as the 5-cell, with three output tetrahedral faces and two input tetrahedral faces.

Let’s see what its boundaries look like, starting from the input.

[9]: penta_input = pentachoron.input
penta_input.draw()

5.3. Exploring simplices and cubes 53

https://en.wikipedia.org/wiki/5-cell


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

This is a slice of a 3-dimensional diagram with two 3-dimensional cells.

This is still hard to visualise directly in three dimensions; instead, we are going to try to visualise it as a sequence of
rewrites on 2-dimensional diagrams.

For that purpose, we use the generate_layering method, which creates a “layering” of a diagram into a sequence
of rewrites, one for each one of its top-dimensional cells. Then, we can

• get a list of the layers with the layers attribute, or

• get a list of the corresponding “rewrite steps” with the rewrite_steps attribute.

[10]: penta_input.generate_layering()
rewalt.strdiags.draw(*penta_input.layers)

nbsphinx-code-borderwhite

54 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[11]: rewalt.strdiags.draw(*penta_input.rewrite_steps)

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 55



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

So, we can see that

• first the 3-dimensional face El(3, 0) “rewrites” the triangles El(2, 0) and El(2, 1) into the triangles El(2,
3) and El(2, 4),

• then the 3-dimensional face El(3, 1) “rewrites” the triangles El(2, 2) and El(2, 3) into the triangles El(2,
5) and El(2, 6).

We can also create a gif “movie” of the rewrite steps (and make it loop backwards so it doesn’t stop too soon).

[12]: rewalt.strdiags.to_gif(
*penta_input.rewrite_steps,
loop=True, path='simplicescubes_1.gif')

Now, let’s look at the output boundary of the oriented 4-simplex.

56 Chapter 5. Contributing



rewalt, Release 0.1.0

[13]: penta_output = pentachoron.output
penta_output.draw()

nbsphinx-code-borderwhite

This is the slice of a 3-dimensional diagram with three 3-dimensional cells. Let’s proceed as with the input.

[14]: penta_output.generate_layering()
rewalt.strdiags.draw(*penta_output.layers)

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 57



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

[15]: rewalt.strdiags.draw(*penta_output.rewrite_steps)

58 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 59



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

Let’s also make a movie of these.

[16]: rewalt.strdiags.to_gif(
*penta_output.rewrite_steps, loop=True,
path='simplicescubes_2.gif')

The two sides of the oriented 4-simplex are, in fact, the two sides of an equation dual to Mac Lane’s pentagon. This
was featured at the end of this other notebook.

60 Chapter 5. Contributing

monoids.html


rewalt, Release 0.1.0

5.3.2 Maps of simplices

So far we have only looked at the oriented simplices “in isolation”. Let’s see how we can use rewalt to understand
their face and degeneracy maps.

Faces are quite simple; let’s look at the example of the 2-simplex. This has 3 faces.

[17]: triangle.draw()
for n in range(3):

triangle.simplex_face(n).draw()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 61



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

By comparing labels, we can see that

• the 0th face of the 2-simplex is the rightmost output,

• the 1st face of the 2-simplex is the only input, and

• the 2nd face of the 2-simplex is the leftmost output.

In general, the faces of an oriented simplex alternate between inputs and outputs, always starting with an output at index
0.

Let’s look at degeneracies; these are somewhat more interesting. There are two degeneracies on the 1-simplex.

[18]: arrow.draw()
for n in range(2):

arrow.simplex_degeneracy(n).draw()

62 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 63



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

The two diagrams represent two surjective (“collapsing”) maps from the 2-simplex to the 1-simplex. The string dia-
grams tell us that

• the 0th degeneracy sends the 2-cell, its input, and the rightmost output of the 2-simplex onto the 1-cell of the
1-simplex, and collapses the leftmost output onto its input 0-cell;

• the 1st degeneracy sends the 2-cell, its input, and the leftmost output of the 2-simplex onto the 1-cell of the
1-simplex, and collapses the rightmost output onto its output 0-cell.

Now, let’s take a look at one degeneracy of the 2-simplex.

[19]: triangle.simplex_degeneracy(0).draw()

nbsphinx-code-borderwhite

This represents a collapsing map from the 3-simplex onto the 2-simplex; the string diagram tells us which input and
which output of the 3-simplex are collapsed, and which are sent to the 2-cell of the 2-simplex.

Let’s obtain some more information by looking at the boundaries.

64 Chapter 5. Contributing



rewalt, Release 0.1.0

[20]: triangle.simplex_degeneracy(0).draw_boundaries()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

This tells us exactly how the two collapsed 2-dimensional faces of the 3-simplex are collapsed: we can tell that, in both
cases, it is the leftmost output that is collapsed, hence the 0-th degeneracy of the 1-simplex is used.

By the way, if we want a precise (but not very intuitive) description of a map, we can use the Hasse diagram visualisation:

[21]: triangle.simplex_degeneracy(0).hasse()

5.3. Exploring simplices and cubes 65



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

This shows us the “oriented face poset” of the source of the map — here, the 3-simplex — with each element labelled
with its image through the map. For example, the third element of the third row from the bottom is labelled with El(1,
0); this means that the map sends El(2, 2) to El(1, 0) (we are counting from 0).

5.3.3 Constructing a simplicial set

Let’s briefly look at how we can use rewalt to construct a simplicial set. As a simple example, we will construct the
3-dimensional real projective space R𝑃 3, with its cell structure made up of a single cell in each dimension.

The first step is to create an empty diagrammatic set.

[22]: RP3 = rewalt.DiagSet()

To ensure that this is really a simplicial set, we only add generators with the add_simplexmethod, taking, as arguments,
the simplicial faces of the new generator in the same order as given by simplex_face.

(In dimension 0 and 1, there’s no substantial difference between add and add_simplex).

[23]: c0 = RP3.add_simplex('c0')
c1 = RP3.add_simplex('c1', c0, c0)

We construct degenerate simplices over the generators with the simplex_degeneracy method.

[24]: c2 = RP3.add_simplex('c2', c1, c0.simplex_degeneracy(0), c1)
c2.draw()

66 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[25]: c3 = RP3.add_simplex(
'c3',
c2, c1.simplex_degeneracy(0), c1.simplex_degeneracy(1), c2)

c3.draw()

nbsphinx-code-borderwhite

[26]: c3.draw_boundaries()

5.3. Exploring simplices and cubes 67



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

There we go; RP3 is now a simplicial model of the 3-dimensional real projective space. We can check that this is
“really” a simplicial set:

[27]: RP3.issimplicial

[27]: True

In future releases, we plan to add features that will allow us to automatically compute some topological invariants of
cell complexes constructed as DiagSet objects.

68 Chapter 5. Contributing



rewalt, Release 0.1.0

5.3.4 Oriented cubes

Let’s move on from simplices to cubes; these can be obtained with the Shape.cube constructor. Unlike in simplices,
there is no (-1)-cube. The 0-cube and the 1-cube are, in fact, the same as the 0-simplex and the 1-simplex.

[28]: assert point == rewalt.Shape.cube(0)
assert arrow == rewalt.Shape.cube(1)

So the first interesting case is the oriented 2-cube: this is a square with two output faces and two input faces.

[29]: square = rewalt.Shape.cube(2)
square.draw()

nbsphinx-code-borderwhite

Next, the oriented 3-cube has three output faces and three input faces. (In fact, the oriented n-cube always has n inputs
and n outputs.)

[30]: cube = rewalt.Shape.cube(3)
cube.draw()

5.3. Exploring simplices and cubes 69



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[31]: cube.draw_boundaries()

nbsphinx-code-borderwhite

70 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

You may see the 2-dimensional boundaries of the oriented 3-cube, in string diagrams, as the shapes of the two sides of
the Yang-Baxter equation, or the two sides of the third Reidemeister move.

Let’s move on to the 4-dimensional cube.

[32]: tesseract = rewalt.Shape.cube(4)
tesseract.draw()

nbsphinx-code-borderwhite

As expected, it has four input faces and four output faces. Let’s proceed as we did with the 4-simplex to understand
what is happening.

[33]: tess_input = tesseract.input
tess_input.draw(wirelabels=False)

5.3. Exploring simplices and cubes 71

https://en.wikipedia.org/wiki/Yang%E2%80%93Baxter_equation
https://ncatlab.org/nlab/show/Reidemeister+move


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

(We have deactivated wire labels to make the image less crowded.)

[34]: tess_input.generate_layering()
rewalt.strdiags.draw(*tess_input.layers)

nbsphinx-code-borderwhite

72 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 73



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[35]: rewalt.strdiags.draw(*tess_input.rewrite_steps, wirelabels=False)

nbsphinx-code-borderwhite

74 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 75



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

Now we turn the sequence of rewrite steps into a gif.

[36]: rewalt.strdiags.to_gif(
*tess_input.rewrite_steps, loop=True,
wirelabels=False,
path='simplicescubes_3.gif')

Next we focus on the output of the 4-cube.

[37]: tess_output = tesseract.output
tess_output.draw(wirelabels=False)

76 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[38]: tess_output.generate_layering()
rewalt.strdiags.draw(*tess_output.layers)

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 77



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

78 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[39]: rewalt.strdiags.to_gif(
*tess_output.rewrite_steps, loop=True,
wirelabels=False,
path='simplicescubes_4.gif')

In the two rewrite sequences corresponding to the input and output boundary of the 4-cube, you may recognise the
shapes of the two sides of the Zamolodchikov tetrahedron equation.

(Why “tetrahedron equation” if its shape is a 4-cube? Not sure!)

5.3.5 Maps of cubes

In contrast to simplices, faces of cubes are specified by two arguments: thinking of the n-cube as [0, 1]𝑛, one argument
is an integer ranging from 0 to (n-1), specifying which coordinate to fix, and the other is a bit (for us, a sign: '-' or
'+') specifying whether to set the coordinate to 0 or to 1.

[40]: for n in range(2):
for sign in ('-', '+'):

square.cube_face(n, sign).draw()

5.3. Exploring simplices and cubes 79

https://arxiv.org/abs/math/0307263


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

80 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

Cubes also have two different kinds of “collapse” maps:

• degeneracies, which collapse the cube along a single coordinate (specified by an integer argument), and

• connections, which “fold” the cube along a pair of consecutive coordinates (specified by an integer argument),
in two different ways (specified by a “sign” argument).

In rewalt, we can get a string-diagrammatic picture of these collapse maps.

[41]: for n in range(2):
arrow.cube_degeneracy(n).draw()

5.3. Exploring simplices and cubes 81



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

[42]: for sign in ('-', '+'):
arrow.cube_connection(0, sign).draw()

82 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

As we saw in another notebook, being familiar with these degeneracies, which are neither “units” or “unitors”, can be
handy when constructing presentations of monoidal or higher algebraic theories.

5.3.6 Constructing a cubical set

Constructing a cubical set with connections is just like constructing a simplicial set, except we use the add_cube
method instead of the add_simplex method when adding generators.

Let’s construct a simple cubical model of the torus, with one 0-cell, two 1-cells, and one 2-cell.

[43]: T = rewalt.DiagSet()
pt = T.add_cube('pt')
a = T.add_cube('a', pt, pt)
b = T.add_cube('b', pt, pt)

(continues on next page)

5.3. Exploring simplices and cubes 83

stringdiagrams.html#A-presentation-of-adjunctions


rewalt, Release 0.1.0

(continued from previous page)

s = T.add_cube('s', a, a, b, b)
s.draw()

nbsphinx-code-borderwhite

That’s all! T is a torus.

We can check that the diagrammatic set we constructed is, indeed, a cubical set:

[44]: T.iscubical

[44]: True

Notice that if we look at this diagrammatic set as string rewrite system instead, it is a presentation of the free commu-
tative monoid on the 2 generators a and b. Of course, the free abelian group on two generators is the first homology
group of the torus.

5.3.7 Mixing them together

One of the reasons why simplices and cubes are “nice” families of shapes is that both are generated by the iteration of
a binary operation, which defines a monoidal structure on their respective shape categories:

• simplices are iterated joins of points;

• cubes are iterated products of intervals.

In fact, both joins and products have “oriented” counterparts, and all shapes of rewalt are closed under both of these
operations:

• the join of shapes, accessed either with the join method, or with the shift operators >> and <<, and

• the Gray product of shapes, accessed either with the gray method, or with the multiplication operator *.

Indeed, this is how rewalt constructs oriented simplices and oriented cubes.

[45]: assert arrow == point >> point
assert triangle == arrow >> point
assert square == arrow * arrow
assert cube == arrow * square

84 Chapter 5. Contributing



rewalt, Release 0.1.0

Joins are useful, for instance, for constructing cones, while products are useful for constructing cylinders. So the first
operation is natural in a simplicial context, but not in a cubical context; while the second operation is natural in a cubical
context but not in a simplicial context.

One nice thing about diagrammatic sets is that we do not need to choose! We can build a cylinder on a simplex. . .

[46]: cylinder = arrow * triangle
cylinder.draw()

nbsphinx-code-borderwhite

[47]: cylinder.draw_boundaries()

nbsphinx-code-borderwhite

5.3. Exploring simplices and cubes 85



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

. . . and we can build a cone on a cube.

[48]: cone = square >> point
cone.draw()

nbsphinx-code-borderwhite

[49]: cone.draw_boundaries()

86 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

5.4 The Eckmann–Hilton argument

A nice theoretical feature of rewalt is “topological soundness”: a diagrammatic set can be geometrically realised as
a CW complex with one cell for each of its generators, and every diagram that we construct in the diagrammatic set
corresponds to a valid homotopy in its realisation.

One of the first non-trivial homotopies that one encounters in algebraic topology are the “braiding” homotopies between
two 2-cells, exhibiting the fact that 𝜋2 of a space is always an abelian group. The construction of these homotopies
is known as Eckmann–Hilton argument, and is also the basis of the identification of braided monoidal categories with
“doubly degenerate” tricategories.

In this notebook, we will implement the Eckmann–Hilton argument in rewalt, by constructing both homotopies in
a diagrammatic set with a single 0-dimensional generator and two 2-dimensional generators. Thanks to topological
soundness, you can also see this as a formal proof of the usual homotopical Eckmann–Hilton.

5.4. The Eckmann–Hilton argument 87

https://arxiv.org/abs/0706.2307
https://arxiv.org/abs/0706.2307


rewalt, Release 0.1.0

First of all, let’s create a diagrammatic set, and add all the generators. We will colour-code the two 2-cells, one in blue
and one in magenta.

[1]: import rewalt

EH = rewalt.DiagSet()
pt = EH.add('pt', draw_label=False)
a = EH.add('a', pt.unit(), pt.unit(), color='blue')
b = EH.add('b', pt.unit(), pt.unit(), color='magenta')

5.4.1 First braiding

The “braiding homotopies” will be made of degenerate cells, starting from the pasting “b after a”, and ending in the
pasting “a after b”.

Our construction of these homotopies will be, essentially, an implementation of the “train tracks” proof by André Joyal
and Joachim Kock. Let’s start from the beginning.

[2]: start = a.paste(b)
start.draw(nodepositions=True)

nbsphinx-code-borderwhite

Let’s introduce some weak units between a and b; one would be sufficient, but we’ll do two for reasons of symmetry.

[3]: rew1 = start.rewrite(0, a.runitor('+'))
rew1.output.draw(nodepositions=True)

88 Chapter 5. Contributing

https://arxiv.org/abs/math/0602084
https://arxiv.org/abs/math/0602084


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[4]: rew2 = rew1.output.rewrite(2, b.lunitor('+'))
rew2.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

Now, we want to “split” the units in positions (1, 2) into two “train tracks”. This can be done with a “fully degenerate”
cell over pt, of the appropriate shape:

[5]: globe = rewalt.Shape.globe(2)
triangle = rewalt.Shape.simplex(2)

track_split_shape = globe.paste(globe).atom(triangle.paste(triangle.dual()))
track_split_shape.draw_boundaries()

5.4. The Eckmann–Hilton argument 89



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

You can see that track_split_shape is a 3-dimensional shape with input and output of the shape we desire, going
from “single track” (pasting of two 2-globes) to “double track” (pasting of a 2-simplex with its dual).

To get a “fully degenerate” cell over pt of shape track_split_shape, we use the degeneracy method.

[6]: track_split = pt.degeneracy(track_split_shape)
track_split.draw_boundaries()

90 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

[7]: rew3 = rew2.output.rewrite([1, 2], track_split)
rew3.output.draw(nodepositions=True)

5.4. The Eckmann–Hilton argument 91



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Now, our goal is to “move a to the right track, and move b to the left track”. This can be done with appropriate
degenerate cells over a and b.

These degenerate cells are neither units or unitors. However, just like units and unitors, they can be obtained from
pullbacks of a and b over particular collapse maps from a “partially collapsed cylinder” on their shape, as provided by
the inflate method of the Shape class.

(I do not expect that this is particulary intuitive; you should try fiddling with inflate to get an idea of the collapses
you can get.)

This, for example, is the map we can use to move a from the bottom to the right track.

[8]: switch_br_map = globe.inflate(globe.all().boundary('+', 0))
switch_br_map.draw_boundaries()

nbsphinx-code-borderwhite

92 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Every other “switch” map we will get as a dual of this one. For example, the “top-to-left” that we need for b is the dual
in dimensions 1 and 2 (“horizontal and vertical flip”).

[9]: switch_tl_map = switch_br_map.dual(1, 2)
switch_tl_map.draw_boundaries()

nbsphinx-code-borderwhite

5.4. The Eckmann–Hilton argument 93



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[10]: a_switch_br = a.pullback(switch_br_map)

rew4 = rew3.output.rewrite([0, 1], a_switch_br)
rew4.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[11]: b_switch_tl = b.pullback(switch_tl_map)

rew5 = rew4.output.rewrite([1, 3], b_switch_tl)
rew5.output.draw(nodepositions=True)

94 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Now we will move a to the top, then b to the bottom. For that, we use pullbacks along other duals of our original
“switch” map.

[12]: switch_rt_map = switch_br_map.dual(2, 3)
a_switch_rt = a.pullback(switch_rt_map)

rew6 = rew5.output.rewrite([2, 3], a_switch_rt)
rew6.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[13]: switch_lb_map = switch_br_map.dual(1, 3)
b_switch_lb = b.pullback(switch_lb_map)

rew7 = rew6.output.rewrite([0, 1], b_switch_lb)
rew7.output.draw(nodepositions=True)

5.4. The Eckmann–Hilton argument 95



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

The relative positions of a and b have been exchanged! Now we only need to get rid of the “train tracks” and other
units between them.

We used degenerate cells to introduce them, and degenerate cells are always “weakly invertible”, so we can just use
their “weak inverses”, obtained with the inverse method.

[14]: rew8 = rew7.output.rewrite([1, 2], track_split.inverse)
rew8.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[15]: rew9 = rew8.output.rewrite([0, 1], b.runitor('-'))
rew9.output.draw(nodepositions=True)

96 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[16]: rew10 = rew9.output.rewrite([1, 2], a.lunitor('-'))
rew10.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

We are done! Let’s put all our rewrites together, and see what our proof looks like as a slice of a 3-dimensional diagram.

[17]: eh1 = rewalt.Diagram.with_layers(
rew1, rew2, rew3, rew4, rew5, rew6, rew7, rew8, rew9, rew10)

eh1.draw()

5.4. The Eckmann–Hilton argument 97



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

See? It’s a braiding where the b strand is passing over the a strand.

We can also assemble all our rewrites into a gif animation. We will also make it loop backwards.

[18]: rewalt.strdiags.to_gif(
*eh1.rewrite_steps, degenalpha=0.2,
loop=True, path='eckmannhilton_1.gif')

5.4.2 Second braiding

In our proof, we made the choice of moving a onto the right track, and b onto the left track; but we might as well have
made a different choice. This would have led to a non-equivalent homotopy, the dual braiding.

Let’s go back to the step where we had the choice, and make a different one. This corresponds to “horizontally flipping”
all the maps we used the first time.

[19]: rew3.output.draw(nodepositions=True)

98 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[20]: switch_bl_map = switch_br_map.dual(1)
a_switch_bl = a.pullback(switch_bl_map)

rew4d = rew3.output.rewrite([0, 1], a_switch_bl)
rew4d.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[21]: switch_tr_map = switch_tl_map.dual(1)
b_switch_tr = b.pullback(switch_tr_map)

rew5d = rew4d.output.rewrite([2, 3], b_switch_tr)
rew5d.output.draw(nodepositions=True)

5.4. The Eckmann–Hilton argument 99



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[22]: switch_lt_map = switch_rt_map.dual(1)
a_switch_lt = a.pullback(switch_lt_map)

rew6d = rew5d.output.rewrite([1, 3], a_switch_lt)
rew6d.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[23]: switch_rb_map = switch_lb_map.dual(1)
b_switch_rb = b.pullback(switch_rb_map)

rew7d = rew6d.output.rewrite([0, 2], b_switch_rb)
rew7d.output.draw(nodepositions=True)

100 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

That’s it; the last few steps are the same as the first time. Let’s put the whole sequence together.

[24]: eh2 = rewalt.Diagram.with_layers(
rew1, rew2, rew3, rew4d, rew5d, rew6d, rew7d, rew8, rew9, rew10)

eh2.draw()

nbsphinx-code-borderwhite

See? Now it is the blue (a) strand that crosses over the magenta (b) strand.

And let’s make another animation.

[25]: rewalt.strdiags.to_gif(
*eh2.rewrite_steps, degenalpha=0.2,
loop=True, path='eckmannhilton_2.gif')

5.4. The Eckmann–Hilton argument 101



rewalt, Release 0.1.0

The diagrams eh1 and eh2 have the same input and output; they could, in principle, be the input and output of another
cell.

By topological soundness, however, we know that there isn’t a diagram between eh1 and eh2: the geometric realisation
of EH is a bouquet of two 2-spheres, and in this space there isn’t a homotopy between the two “braidings”.

You are welcome to add one by hand, if you really want.

[26]: symmetriser = EH.add('symmetriser', eh1, eh2)
symmetriser.draw()

nbsphinx-code-borderwhite

5.5 Presenting a category

The “higher-dimensional rewrite systems” that we construct in rewalt are interpretable in higher-dimensional cate-
gories, but they are, in general, different from higher-dimensional categories, in that they have no notion of composition
of diagrams; that is, there’s no way, in general, to “turn a diagram with many n-cells into a single n-cell”.

Nevertheless, rewalt contains an implementation of a model of higher categories, in the form of diagrammatic sets
with weak composites. This allows us to “declare” a cell to be the composite of a diagram; the composition is exhibited
by a higher-dimensional compositor cell.

In this notebook, we will use the dedicated methods to construct a presentation of a simple finite category, consisting
of a commuting square of four morphisms.

5.5.1 Adding all objects and morphisms

We start by creating an empty DiagSet, and adding all the objects and morphisms of our category. We have four
objects (0-generators).

[1]: import rewalt

C = rewalt.DiagSet()

(continues on next page)

102 Chapter 5. Contributing

https://arxiv.org/abs/2007.14505
https://arxiv.org/abs/2007.14505


rewalt, Release 0.1.0

(continued from previous page)

x0 = C.add('x0')
x1 = C.add('x1')
x2 = C.add('x2')
x3 = C.add('x3')

Then we add the four morphisms (1-generators) that form the boundary of our commuting square.

[2]: f0 = C.add('f0', x0, x1)
f1 = C.add('f1', x1, x3)
g0 = C.add('g0', x0, x2)
g1 = C.add('g1', x2, x3)

Now we have two parallel diagrams of two 1-cells: f0.paste(f1) and g0.paste(g1). We add the “diagonal”
morphism that will be the composite of both diagrams.

[3]: h = C.add('h', x0, x3)

That’s it; now we move on to the compositors.

5.5.2 Adding compositors

We declare a generator to be the “weak composite” of a diagram with the make_composite method. This will add a
“compositor” 2-cell, and return it as a Diagram object.

[4]: c_f = C.make_composite('h', f0.paste(f1))
c_f.draw()

nbsphinx-code-borderwhite

[5]: c_g = C.make_composite('h', g0.paste(g1))
c_g.draw()

5.5. Presenting a category 103



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

We can check that a diagram has a composite with the hascomposite attribute; if a diagram has a composite, we can
retrieve it with the composite attribute.

[6]: f0.paste(f1).hascomposite

[6]: True

[7]: f0.paste(f1).composite == h

[7]: True

A compositor allows us to rewrite a diagram into a cell. Now, according to the theory, to exhibit a genuine weak
composite, the compositor would need to be weakly invertible.

As we saw in another notebook, since weak invertibility requires an infinite “tower” of cells, the approach of rewalt
is to “invert only when needed”. That also applies to compositors, which are created in “one direction only”, and must
be explicitly inverted if needed.

(Another reason to not invert by default is that one may want to use DiagSet objects to implement different kinds of
higher structures, such as representable multicategories or “lax” versions thereof, where it is important that compositors
only go “one way”.)

[8]: c_f_inv, c_f_rinvertor, c_f_linvertor = C.invert(c_f)
c_f_inv.draw()

104 Chapter 5. Contributing

monoids.html
https://www.sciencedirect.com/science/article/pii/S0001870899918777


rewalt, Release 0.1.0

nbsphinx-code-borderwhite

Now that we have an inverse compositor, we can “rewrite” g0.paste(g1) into f0.paste(f1) via their shared com-
posite.

[9]: g_to_f = c_g.paste(c_f_inv)
g_to_f.draw()

nbsphinx-code-borderwhite

To go the other way around, we need to invert the compositor for g0.paste(g1).

[10]: c_g_inv, c_g_rinvertor, c_g_linvertor = C.invert(c_g)

f_to_g = c_f.paste(c_g_inv)
f_to_g.draw()

5.5. Presenting a category 105



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

This pair of diagrams “embodies” the commuting square with sides f0, f1, g0, g1.

We can use the “invertors” to show that the two diagrams are each other’s weak inverse.

[11]: f_to_g.paste(g_to_f).draw(nodepositions=True)

nbsphinx-code-borderwhite

[12]: rew1 = f_to_g.paste(g_to_f).rewrite([1, 2], c_g_linvertor)
rew1.output.draw(nodepositions=True)

106 Chapter 5. Contributing



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

[13]: rew2 = rew1.output.rewrite([0, 1], c_f.runitor('-'))
rew2.output.draw(nodepositions=True)

nbsphinx-code-borderwhite

[14]: rew3 = rew2.output.rewrite([0, 1], c_f_rinvertor)
rew3.output.draw()

5.5. Presenting a category 107



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

5.5.3 Composites involving units

Now in C all 1-dimensional diagrams have composites, so we can see C as a category.

Except, in fact, not all 1-dimensional diagrams have composites that C knows of !

[15]: x0.unit().paste(f0).hascomposite

[15]: False

Nevertheless, we can certainly turn this diagram into a single cell, using the left unitor for f0.

[16]: f0.lunitor('-').draw()

nbsphinx-code-borderwhite

This is even already “weakly invertible”, as all degenerate cells are.

108 Chapter 5. Contributing



rewalt, Release 0.1.0

[17]: f0.lunitor('-').inverse.draw()

nbsphinx-code-borderwhite

So why does rewalt not consider unitors to be compositors?

There is a good reason: rewalt does not make a distinction between presentations of categories, bicategories, or n-
categories for any other n. And there are certainly non-strict bicategories in which the composite of a 1-cell with a unit
is not equal to the 1-cell.

So if we want C to know that f0 is, indeed, the composite of x0.unit() and f0, we need to make it explicit.

[18]: c_x0_f0 = C.make_composite('f0', x0.unit().paste(f0))

This will add a compositor which is not the same as the left unitor on f0.

(The reason you cannot declare an existing degenerate cell to be a compositor is that rewalt wants compositors to be
generators, so it can remember which compositors a DiagSet contains just by their list of names).

So if we want to “equate” the compositor to the unitor, we have to do it “weakly”, by adding a 3-cell between them.

[19]: comp_to_lu = C.add('comp_to_lu', c_x0_f0, f0.lunitor('-'))
comp_to_lu.draw()

5.5. Presenting a category 109



rewalt, Release 0.1.0

nbsphinx-code-borderwhite

5.6 diagrams

Implements diagrammatic sets and diagrams.

rewalt.diagrams.DiagSet() Class for diagrammatic sets, a model of higher-
dimensional rewrite systems and/or directed cell com-
plexes.

rewalt.diagrams.Diagram(ambient) Class for diagrams, that is, mappings from a shape to an
"ambient" diagrammatic set.

rewalt.diagrams.SimplexDiagram(ambient) Subclass of Diagram for diagrams whose shape is an
oriented simplex.

rewalt.diagrams.CubeDiagram(ambient) Subclass of Diagram for diagrams whose shape is an
oriented cube.

rewalt.diagrams.PointDiagram(ambient) Subclass of Diagram for diagrams whose shape is a
point.

5.6.1 diagrams.DiagSet

class rewalt.diagrams.DiagSet

Bases: object

Class for diagrammatic sets, a model of higher-dimensional rewrite systems and/or directed cell complexes.

A diagrammatic set is constructed by creating an empty object, then adding named generators of different di-
mensions. The addition of a generator models the gluing of an atomic shapes.Shape object along its boundary.

This operation produces a diagram, that is, a map from a shape to the diagrammatic set, modelled as a Diagram
object. From these “basic” diagrams, we can construct “derived” diagrams either by pasting, or by pulling back
along shape maps (this is used to produce “unit” or “degenerate” diagrams).

To add a 0-dimensional generator (a point), we just give it a name. In the main constructor add(), the gluing of
an n-dimensional generator is specified by a pair of round, (n-1)-dimensional Diagram objects, describing the

110 Chapter 5. Contributing



rewalt, Release 0.1.0

gluing maps for the input and output boundaries of a shape.

Simplicial sets, cubical sets with connections, and reflexive globular sets are all special cases of diagram-
matic sets, where the generators have simplicial, cubical, or globular shapes. There are special constructors
add_simplex() and add_cube() for adding simplicial and cubical generators by listing all their faces.

The generators of a diagrammatic set are, by default, “directed” and not invertible. The class supports a model
of weak or pseudo- invertibility, where two generators being each other’s “weak inverse” is witnessed by a pair
of higher-dimensional generators (invertors). This is produced by the methods invert() (creates an inverse)
and make_inverses() (makes an existing generator the inverse).

Diagrammatic sets do not have an intrinsic notion of composition of diagrams, so they are not by themselves a
model of higher categories. However, the class supports a model of higher categories in which one generator
being the composite of a diagram is witnessed by a higher-dimensional generator (a compositor). This is pro-
duced by the methods compose() (creates a composite) and make_composite() (makes an existing generator
the composite).

Notes

There is an alternative constructor yoneda() which turns a shapes.Shape object into a diagrammatic set with
one generator for every face of the shape.

Methods

add(name[, input, output]) Adds a generator and returns the diagram that maps
the new generator into the diagrammatic set.

add_cube(name, *faces, **kwargs) Variant of add() for cube-shaped generators.
add_simplex(name, *faces, **kwargs) Variant of add() for simplex-shaped generators.
compose(diagram[, name, compositorname]) Given a round diagram, adds a weak composite for it,

together with a compositor witnessing the composi-
tion, and returns them as diagrams.

copy() Returns a copy of the object.
invert(generatorname[, inversename, ...]) Adds a weak inverse for a generator, together with

left and right invertors that witness the inversion, and
returns them as diagrams.

make_composite(generatorname, diagram[, ...]) Given a generator and a round diagram, it makes the
first the weak composite of the second by adding a
compositor, and returns the compositor as a diagram.

make_inverses(generatorname1, generatorname2) Makes two generators each other's weak inverse by
adding invertors, and returns the invertors.

remove(generatorname) Removes a generator, together with all other genera-
tors that depend on it.

update(generatorname, **kwargs) Updates the optional arguments of a generator.
yoneda(shape) Alternative constructor creating a diagrammatic set

from a shapes.Shape.

5.6. diagrams 111



rewalt, Release 0.1.0

Attributes

by_dim Returns the set of generators indexed by dimension.
compositors Returns a dictionary of diagrams that have a non-

trivial composite, indexed by their compositor's
name.

dim Returns the maximal dimension of a generator.
generators Returns the object's internal representation of the set

of generators and related data.
iscubical Returns whether the diagrammatic sets is cubical,

that is, all its generators are cube-shaped.
issimplicial Returns whether the diagrammatic sets is simplicial,

that is, all its generators are simplex-shaped.

property generators

Returns the object’s internal representation of the set of generators and related data.

This is a dictionary whose keys are the generators’ names. For each generator, the object stores another
dictionary, which contains at least

• the generator’s shape (shape, shapes.Shape),

• the mapping of the shape (mapping, list[list[hashable]]),

• the generator’s set of “faces”, that is, other generators appearing as codimension-1 faces of the gener-
ator (faces, set[hashable]),

• the generator’s set of “cofaces”, that is, other generators that have the generator as a face (cofaces,
set[hashable]).

If the generator has been inverted, it will also contain

• its inverse’s name (inverse, hashable),

• the left invertor’s name (linvertor, hashable),

• the right invertor’s name (rinvertor, hashable).

If the generator happens to be a compositor, it will also contain the name of the composite it is exhibiting
(composite, hashable).

This also stores any additional keyword arguments passed when adding the generator.

Returns
generators – The generators data.

Return type
dict[dict]

property by_dim

Returns the set of generators indexed by dimension.

Returns
by_dim – The set of generators indexed by dimension.

Return type
dict[hashable]

112 Chapter 5. Contributing



rewalt, Release 0.1.0

property compositors

Returns a dictionary of diagrams that have a non-trivial composite, indexed by their compositor’s name.

More precisely, rather than Diagram objects, the dictionary stores the shape and mapping data that allows
to reconstruct them.

Returns
compositors – The dictionary of composed diagrams.

Return type
dict[dict]

property dim

Returns the maximal dimension of a generator.

Returns
dim – The maximal dimension of a generator, or -1 if empty.

Return type
int

property issimplicial

Returns whether the diagrammatic sets is simplicial, that is, all its generators are simplex-shaped.

Returns
issimplicial – True if and only if the shape of every generator is a shapes.Simplex object.

Return type
bool

property iscubical

Returns whether the diagrammatic sets is cubical, that is, all its generators are cube-shaped.

Returns
iscubical – True if and only if the shape of every generator is a shapes.Cube object.

Return type
bool

add(name, input=None, output=None, **kwargs)
Adds a generator and returns the diagram that maps the new generator into the diagrammatic set.

The gluing of the generator is specified by a pair of round diagrams with identical boundaries, corresponding
to the input and output diagrams of the new generator. If none are given, adds a point (0-dimensional
generator).

Parameters

• name (hashable) – Name to assign to the new generator.

• input (Diagram , optional) – The input diagram of the new generator (default is None)

• output (Diagram , optional) – The output diagram of the new generator (default is None)

Keyword Arguments

• color (multiple types) – Fill color when pictured as a node in string diagrams. If
stroke is not specified, this is also the color when pictured as a wire.

• stroke (multiple types) – Stroke color when pictured as a node, and color when pic-
tured as a wire.

• draw_node (bool) – If False, no node is drawn when picturing the generator in string
diagrams.

5.6. diagrams 113



rewalt, Release 0.1.0

• draw_label (bool) – If False, no label is drawn when picturing the generator in string
diagrams.

Returns
generator – The diagram picking the new generator.

Return type
Diagram

Raises
ValueError – If the name is already in use, or the input and output diagrams do not have
round and matching boundaries.

add_simplex(name, *faces, **kwargs)
Variant of add() for simplex-shaped generators.

The gluing of the generator is specified by a number of SimplexDiagram objects, corresponding to the
faces of the new generator as listed by SimplexDiagram.simplex_face.

Parameters

• name (hashable) – Name to assign to the new generator.

• *faces (SimplexDiagram) – The simplicial faces of the new generator.

Keyword Arguments
**kwargs – Same as add().

Returns
generator – The diagram picking the new generator.

Return type
SimplexDiagram

Raises
ValueError – If the name is already in use, or the faces do not have matching boundaries.

add_cube(name, *faces, **kwargs)
Variant of add() for cube-shaped generators.

The gluing of the generator is specified by a number of CubeDiagram objects, corresponding to the faces of
the new generator as listed by CubeDiagram.cube_face, in the order (0, '-'), (0, '+'), (1, '-'),
(1, '+'), etc.

Parameters

• name (hashable) – Name to assign to the new generator.

• *faces (CubeDiagram) – The cubical faces of the new generator.

Keyword Arguments
**kwargs – Same as add().

Returns
generator – The diagram picking the new generator.

Return type
CubeDiagram

Raises
ValueError – If the name is already in use, or the faces do not have matching boundaries.

114 Chapter 5. Contributing



rewalt, Release 0.1.0

invert(generatorname, inversename=None, rinvertorname=None, linvertorname=None, **kwargs)
Adds a weak inverse for a generator, together with left and right invertors that witness the inversion, and
returns them as diagrams.

Both the inverse and the invertors can be given custom names. If the generator to be inverted is named 'a',
the default names are

• 'a1' for the inverse,

• 'inv(a, a1)' for the right invertor,

• 'inv(a1, a)' for the left invertor.

In the theory of diagrammatic sets, weak invertibility would correspond to the situation where the invertors
themselves are weakly invertible, coinductively. In the implementation, we take an “invert when necessary”
approach, where invertors are not invertible by default, and should be inverted when needed.

Notes

The right invertor for the generator is the left invertor for its inverse, and the left invertor for the generator
is the right invertor for its inverse.

Parameters

• generatorname (hashable) – Name of the generator to invert.

• inversename (hashable, optional) – Name assigned to the inverse.

• rinvertorname (hashable, optional) – Name assigned to the right invertor.

• linvertorname (hashable, optional) – Name assigned to the left invertor.

Keyword Arguments
**kwargs – Passed to add() when adding the inverse.

Returns

• inverse (Diagram) – The diagram picking the inverse.

• rinvertor (Diagram) – The diagram picking the right invertor.

• linvertor (Diagram) – The diagram picking the left invertor.

Raises
ValueError – If the generator is already inverted, or 0-dimensional.

make_inverses(generatorname1, generatorname2, rinvertorname=None, linvertorname=None)
Makes two generators each other’s weak inverse by adding invertors, and returns the invertors.

In what follows, “right/left” invertors are relative to the first generator. Both invertors can be given custom
names. If the generators are named 'a', 'b', the default names for the invertors are

• 'inv(a, b)' for the right invertor,

• 'inv(b, a)' for the left invertor.

In the theory of diagrammatic sets, weak invertibility would correspond to the situation where the invertors
themselves are weakly invertible, coinductively. In the implementation, we take an “invert when necessary”
approach, where invertors are not invertible by default, and should be inverted when needed.

Parameters

• generatorname1 (hashable) – Name of the first generator.

• generatorname2 (hashable, optional) – Name of the second generator.

5.6. diagrams 115



rewalt, Release 0.1.0

• rinvertorname (hashable, optional) – Name assigned to the right invertor.

• linvertorname (hashable, optional) – Name assigned to the left invertor.

Returns

• rinvertor (Diagram) – The diagram picking the right invertor.

• linvertor (Diagram) – The diagram picking the left invertor.

Raises
ValueError – If the generators are already inverted, or 0-dimensional, or do not have com-
patible boundaries.

compose(diagram, name=None, compositorname=None, **kwargs)
Given a round diagram, adds a weak composite for it, together with a compositor witnessing the composi-
tion, and returns them as diagrams.

Both the composite and the compositor can be given custom names. If the diagram to be composed is
named 'a', the default names are

• 'a' for the composite,

• 'comp(a)' for the compositor.

In the theory of diagrammatic sets, a weak composite is witnessed by a weakly invertible compositor. In
the implementation, we take an “invert when necessary” approach, where compositors are not invertible by
default, and should be inverted when needed.

Notes

A cell (a diagram whose shape is an atom) is treated as already having itself as a composite, witnessed by
a unit cell; this method can only be used on non-atomic diagrams.

Parameters

• diagram (Diagram) – The diagram to compose.

• name (hashable, optional) – Name of the weak composite.

• compositorname (hashable, optional) – Name of the compositor.

Keyword Arguments
**kwargs – Passed to add() when adding the composite.

Returns

• composite (Diagram) – The diagram picking the composite.

• compositor (Diagram) – The diagram picking the compositor.

Raises
ValueError – If the diagram is not round, or already has a composite.

make_composite(generatorname, diagram, compositorname=None)
Given a generator and a round diagram, it makes the first the weak composite of the second by adding a
compositor, and returns the compositor as a diagram.

The compositor can be given a custom name. If the diagram to be composed is named 'a', the default
name is 'comp(a)'.

In the theory of diagrammatic sets, a weak composite is witnessed by a weakly invertible compositor. In
the implementation, we take an “invert when necessary” approach, where compositors are not invertible by
default, and should be inverted when needed.

116 Chapter 5. Contributing



rewalt, Release 0.1.0

Notes

A cell (a diagram whose shape is an atom) is treated as already having itself as a composite, witnessed by
a unit cell; this method can only be used on non-atomic diagrams.

Parameters

• generatorname (hashable) – Name of the generator that should be its composite.

• diagram (Diagram) – The diagram to compose.

• compositorname (hashable, optional) – Name of the compositor.

Returns
compositor – The diagram picking the compositor.

Return type
Diagram

Raises
ValueError – If the diagram is not round, or already has a composite, or the diagram and
the generator do not have matching boundaries.

remove(generatorname)
Removes a generator, together with all other generators that depend on it.

Parameters
generatorname (hashable) – Name of the generator to remove.

update(generatorname, **kwargs)
Updates the optional arguments of a generator.

Parameters
generatorname (hashable) – Name of the generator to update.

Keyword Arguments
**kwargs – Any arguments to update.

Raises
AttributeError – If the optional argument uses a private keyword.

copy()

Returns a copy of the object.

Returns
copy – A copy of the object.

Return type
DiagSet

static yoneda(shape)
Alternative constructor creating a diagrammatic set from a shapes.Shape.

Mathematically, diagrammatic sets are certain sheaves on the category of shapes and maps of shapes; this
constructor implements the Yoneda embedding of a shape. This has an n-dimensional generator for each
n-dimensional element of the shape.

Parameters
shape (shapes.Shape) – A shape.

Returns
yoneda – The Yoneda-embedded shape.

5.6. diagrams 117



rewalt, Release 0.1.0

Return type
DiagSet

5.6.2 diagrams.Diagram

class rewalt.diagrams.Diagram(ambient)
Bases: object

Class for diagrams, that is, mappings from a shape to an “ambient” diagrammatic set.

To create a diagram, we start from generators of a diagrammatic set, returned by the DiagSet.add() method
or requested with indexer operators.

Then we produce other diagrams in two main ways:

• pulling back a diagram along a map of shapes (pullback()), or

• pasting together two diagrams along their boundaries (paste(), to_inputs(), to_outputs()).

In practice, the direct use of pullback(), which requires an explicit shape map, can be avoided in common
cases by using unit(), lunitor(), runitor(), or the specialised SimplexDiagram.simplex_degeneracy,
CubeDiagram.cube_degeneracy, and CubeDiagram.cube_connection methods.

Notes

Initialising a Diagram directly creates an empty diagram in a given diagrammatic set.

Parameters
ambient (DiagSet) – The ambient diagrammatic set.

118 Chapter 5. Contributing



rewalt, Release 0.1.0

Methods

boundary(sign[, dim]) Returns the boundary of a given orientation and di-
mension.

draw(**params) Bound version of strdiags.draw().
draw_boundaries(**params) Bound version of strdiags.draw_boundaries().
generate_layering() Assigns a layering to the diagram, iterating through

all the layerings, and returns it.
hasse(**params) Bound version of hasse.draw().
lunitor([sign, positions]) Returns a left unitor on the diagram: a degenerate

diagram one dimension higher, with one boundary
equal to the diagram, and the other equal to the di-
agram with units pasted to some of its inputs.

paste(other[, dim]) Given two diagrams and k such that the output k-
boundary of the first is equal to the input k-boundary
of the second, returns their pasting along the match-
ing boundaries.

pullback(shapemap[, name]) Returns the pullback of the diagram along a shape
map.

rename(name) Renames the diagram.
rewrite(positions, diagram) Returns the diagram representing the application of

a higher-dimensional rewrite to a subdiagram, speci-
fied by the positions of its top-dimensional elements.

runitor([sign, positions]) Returns a right unitor on the diagram: a degenerate
diagram one dimension higher, with one boundary
equal to the diagram, and the other equal to the di-
agram with units pasted to some of its outputs.

to_inputs(positions, other[, dim]) Returns the pasting of another diagram along a round
subshape of the input k-boundary, specified by the
positions of its k-dimensional elements.

to_outputs(positions, other[, dim]) Returns the pasting of another diagram along a round
subshape of the output k-boundary, specified by the
positions of its k-dimensional elements.

unit() Returns the unit on the diagram: a degenerate dia-
gram one dimension higher, with input and output
equal to the diagram.

with_layers(fst, *layers) Given a non-zero number of diagrams that can be
pasted sequentially in the top dimension, returns their
pasting.

yoneda(shapemap[, name]) Alternative constructor creating a diagram from a
shapes.ShapeMap.

5.6. diagrams 119



rewalt, Release 0.1.0

Attributes

ambient Returns the ambient diagrammatic set.
composite Returns the composite of the diagram, if it exists.
compositor Returns the compositor of the diagram, if it exists.
dim Shorthand for shape.dim.
hascomposite Returns whether the diagram has a composite.
input Alias for boundary('-').
inverse Returns the inverse of an invertible cell.
iscell Shorthand for shape.isatom (a cell is a diagram

whose shape is an atom).
isdegenerate Returns whether the diagram is degenerate, that is, its

image has dimension strictly lower than the dimen-
sion of its shape.

isinvertiblecell Returns whether the diagram is an invertible cell.
isround Shorthand for shape.isround.
layers Returns the layering of the diagram corresponding to

the current layering of the shape.
linvertor Returns the left invertor for an invertible cell.
mapping Returns the data specifying the mapping of shape el-

ements to generators.
name Returns the name of the diagram.
output Alias for boundary('+').
rewrite_steps Returns the sequence of rewrite steps associated to

the current layering of the diagram.
rinvertor Returns the right invertor for an invertible cell.
shape Returns the shape of the diagram.

property name

Returns the name of the diagram.

Returns
name – The name of the diagram.

Return type
hashable

property shape

Returns the shape of the diagram.

Returns
shape – The shape of the diagram.

Return type
shapes.Shape

property ambient

Returns the ambient diagrammatic set.

Returns
ambient – The ambient diagrammatic set.

Return type
DiagSet

120 Chapter 5. Contributing



rewalt, Release 0.1.0

property mapping

Returns the data specifying the mapping of shape elements to generators.

The mapping is specified as a list of lists, similar to ogposets.OgMap, in the following way:
mapping[n][k] == s if the diagram sends El(n, k) to the generator named s.

Returns
mapping – The data specifying the diagram’s assignment.

Return type
list[list[hashable]]

property layers

Returns the layering of the diagram corresponding to the current layering of the shape.

Returns
layers – The current layering.

Return type
list[Diagram]

property rewrite_steps

Returns the sequence of rewrite steps associated to the current layering of the diagram.

The 0-th rewrite step is the input boundary of the diagram. For n > 0, the n-th rewrite step is the output
boundary of the (n-1)-th layer.

Returns
rewrite_steps – The current sequence of rewrite steps.

Return type
list[Diagram]

property dim

Shorthand for shape.dim.

property isdegenerate

Returns whether the diagram is degenerate, that is, its image has dimension strictly lower than the dimension
of its shape.

Returns
isdegenerate – True if and only if the diagram is degenerate.

Return type
bool

property isround

Shorthand for shape.isround.

property iscell

Shorthand for shape.isatom (a cell is a diagram whose shape is an atom).

property isinvertiblecell

Returns whether the diagram is an invertible cell.

A cell is invertible if either

• it is degenerate, or

• its image is an invertible generator.

5.6. diagrams 121



rewalt, Release 0.1.0

Returns
isinvertiblecell – True if and only if the diagram is an invertible cell.

Return type
bool

property hascomposite

Returns whether the diagram has a composite.

Returns
hascomposite – True if and only if the diagram has a composite.

Return type
bool

rename(name)
Renames the diagram.

Parameters
name (hashable) – The new name for the diagram.

paste(other, dim=None, **params)
Given two diagrams and k such that the output k-boundary of the first is equal to the input k-boundary of
the second, returns their pasting along the matching boundaries.

Parameters

• fst (Diagram) – The first diagram.

• snd (Diagram) – The second diagram.

• dim (int, optional) – The dimension of the boundary along which they will be pasted
(default is min(fst.dim, snd.dim) - 1).

Keyword Arguments
cospan (bool) – Whether to also return the cospan of inclusions of the two diagrams’ shapes
into the pasting (default is False).

Returns

• paste (Diagram) – The pasted diagram.

• paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two
diagrams’ shapes into their pasting.

Raises
ValueError – If the boundaries do not match.

to_outputs(positions, other, dim=None, **params)
Returns the pasting of another diagram along a round subshape of the output k-boundary, specified by the
positions of its k-dimensional elements.

Parameters

• positions (list[int] | int) – The positions of the outputs along which to paste. If
given an integer n, interprets it as the list [n].

• other (Diagram) – The other diagram to paste.

• dim (int, optional) – The dimension of the boundary along which to paste (default is
self.dim - 1)

122 Chapter 5. Contributing



rewalt, Release 0.1.0

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the two diagrams’ shapes into
the pasting (default is False).

Returns

• to_outputs (Shape) – The pasted diagram.

• paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two
diagrams’ shapes into their pasting.

Raises
ValueError – If the boundaries do not match, or the pasting does not produce a well-formed
shape.

to_inputs(positions, other, dim=None, **params)
Returns the pasting of another diagram along a round subshape of the input k-boundary, specified by the
positions of its k-dimensional elements.

Parameters

• positions (list[int] | int) – The positions of the inputs along which to paste. If given
an integer n, interprets it as the list [n].

• other (Diagram) – The other diagram to paste.

• dim (int, optional) – The dimension of the boundary along which to paste (default is
self.dim - 1)

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the two diagrams’ shapes into
the pasting (default is False).

Returns

• to_inputs (Shape) – The pasted diagram.

• paste_cospan (ogposets.OgMapPair, optional) – The cospan of inclusions of the two
diagrams’ shapes into their pasting.

Raises
ValueError – If the boundaries do not match, or the pasting does not produce a well-formed
shape.

rewrite(positions, diagram)
Returns the diagram representing the application of a higher-dimensional rewrite to a subdiagram, specified
by the positions of its top-dimensional elements.

This is in fact an alias for to_outputs() in the top dimension, reflecting the intuitions of higher-
dimensional rewriting in this situation.

Parameters

• positions (list[int] | int) – The positions of the top-dimensional elements to rewrite.
If given an integer n, interprets it as the list [n].

• diagram (Diagram) – The diagram representing the rewrite to apply.

Returns
rewrite – The diagram representing the application of the rewrite to the given positions.

Return type
Shape

5.6. diagrams 123



rewalt, Release 0.1.0

pullback(shapemap, name=None)
Returns the pullback of the diagram along a shape map.

Parameters

• shapemap (shapes.ShapeMap) – The map along which to pull back.

• name (hashable, optional) – The name to give to the new diagram.

Returns
pullback – The pulled back diagram.

Return type
Diagram

Raises
ValueError – If the target of the map is not equal to the diagram shape.

boundary(sign, dim=None)
Returns the boundary of a given orientation and dimension.

This is, by definition, the pullback of a diagram along the inclusion map self.shape.boundary(sign,
dim).

Parameters

• sign (str) – Orientation: '-' for input, '+' for output.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary – The requested boundary.

Return type
Diagram

property input

Alias for boundary('-').

property output

Alias for boundary('+').

unit()

Returns the unit on the diagram: a degenerate diagram one dimension higher, with input and output equal
to the diagram.

This is, by definition, the pullback of the diagram along self.shape.inflate().

Returns
unit – The unit diagram.

Return type
Diagram

lunitor(sign='-', positions=None)
Returns a left unitor on the diagram: a degenerate diagram one dimension higher, with one boundary equal
to the diagram, and the other equal to the diagram with units pasted to some of its inputs.

Parameters

• sign (str, optional) – The boundary on which the units are: '-' (default) for input, '+'
for output.

124 Chapter 5. Contributing



rewalt, Release 0.1.0

• positions (list[int] | int) – The positions of the inputs to which a unit is attached
(default is all of the inputs). If given an integer n, interprets it as the list [n].

Returns
lunitor – The left unitor diagram.

Return type
Diagram

Raises
ValueError – If the positions do not correspond to inputs.

runitor(sign='-', positions=None)
Returns a right unitor on the diagram: a degenerate diagram one dimension higher, with one boundary
equal to the diagram, and the other equal to the diagram with units pasted to some of its outputs.

Parameters

• sign (str, optional) – The boundary on which the units are: '-' (default) for input, '+'
for output.

• positions (list[int] | int) – The positions of the outputs to which a unit is attached
(default is all of the outputs). If given an integer n, interprets it as the list [n].

Returns
runitor – The right unitor diagram.

Return type
Diagram

Raises
ValueError – If the positions do not correspond to outputs.

property inverse

Returns the inverse of an invertible cell.

Returns
inverse – The inverse cell.

Return type
Diagram

Raises
ValueError – If the diagram is not an invertible cell.

property rinvertor

Returns the right invertor for an invertible cell.

Returns
rinvertor – The right invertor.

Return type
Diagram

Raises
ValueError – If the diagram is not an invertible cell.

property linvertor

Returns the left invertor for an invertible cell.

Returns
linvertor – The left invertor.

5.6. diagrams 125



rewalt, Release 0.1.0

Return type
Diagram

Raises
ValueError – If the diagram is not an invertible cell.

property composite

Returns the composite of the diagram, if it exists.

Returns
composite – The composite.

Return type
Diagram

Raises
ValueError – If the diagram does not have a composite.

property compositor

Returns the compositor of the diagram, if it exists.

Returns
compositor – The compositor.

Return type
Diagram

Raises
ValueError – If the diagram does not have a composite.

generate_layering()

Assigns a layering to the diagram, iterating through all the layerings, and returns it.

Returns
layers – The generated layering.

Return type
list[Diagram]

hasse(**params)
Bound version of hasse.draw().

Calling x.hasse(**params) is equivalent to calling hasse.draw(x, **params).

draw(**params)
Bound version of strdiags.draw().

Calling x.draw(**params) is equivalent to calling strdiags.draw(x, **params).

draw_boundaries(**params)
Bound version of strdiags.draw_boundaries().

Calling x.draw_boundaries(**params) is equivalent to calling strdiags.draw_boundaries(x,
**params).

static yoneda(shapemap, name=None)
Alternative constructor creating a diagram from a shapes.ShapeMap.

Mathematically, diagrammatic sets are certain sheaves on the category of shapes and maps of shapes; this
constructor implements the Yoneda embedding of a map of shapes.

Parameters

126 Chapter 5. Contributing



rewalt, Release 0.1.0

• shapemap (shapes.Shape) – A map of shapes.

• name (hashable, optional) – The name of the generated diagram.

Returns
yoneda – The Yoneda-embedded map.

Return type
Diagram

static with_layers(fst, *layers)
Given a non-zero number of diagrams that can be pasted sequentially in the top dimension, returns their
pasting.

Parameters

• fst (Diagram) – The first diagram.

• *layers (Diagram) – Any number of additional diagrams.

Returns
with_layers – The pasting of all the diagrams in the top dimension.

Return type
Diagram

Raises
ValueError – If the diagrams are not pastable.

5.6.3 diagrams.SimplexDiagram

class rewalt.diagrams.SimplexDiagram(ambient)
Bases: Diagram

Subclass of Diagram for diagrams whose shape is an oriented simplex.

The methods of this class provide an implementation of the structural maps of a simplicial set.

Methods

simplex_degeneracy(k) Returns one of the degeneracies of the simplex.
simplex_face(k) Returns one of the faces of the simplex.

simplex_face(k)
Returns one of the faces of the simplex.

This is, by definition, the pullback of the diagram along self.shape.simplex_face(k).

Parameters
k (int) – The index of the face, ranging from 0 to self.dim.

Returns
simplex_face – The face.

Return type
Diagram

Raises
ValueError – If the index is out of range.

5.6. diagrams 127



rewalt, Release 0.1.0

simplex_degeneracy(k)
Returns one of the degeneracies of the simplex.

This is, by definition, the pullback of the diagram along self.shape.simplex_degeneracy(k).

Parameters
k (int) – The index of the degeneracy, ranging from 0 to self.dim.

Returns
simplex_degeneracy – The degeneracy.

Return type
Diagram

Raises
ValueError – If the index is out of range.

5.6.4 diagrams.CubeDiagram

class rewalt.diagrams.CubeDiagram(ambient)
Bases: Diagram

Subclass of Diagram for diagrams whose shape is an oriented cube.

The methods of this class provide an implementation of the structural maps of a cubical set with connections.

Methods

cube_connection(k, sign) Returns one of the connections of the cube.
cube_degeneracy(k) Returns one of the degeneracies of the cube.
cube_face(k, sign) Returns one of the faces of the cube.

cube_face(k, sign)
Returns one of the faces of the cube.

This is, by definition, the pullback of the diagram along self.shape.cube_face(k, sign).

Parameters

• k (int) – Index of the face, ranging from 0 to self.dim - 1.

• sign (str) – Side: '-' or '+'.

Returns
cube_face – The face.

Return type
Diagram

Raises
ValueError – If the index is out of range.

cube_degeneracy(k)
Returns one of the degeneracies of the cube.

This is, by definition, the pullback of the diagram along self.shape.cube_degeneracy(k).

Parameters
k (int) – The index of the degeneracy, ranging from 0 to self.dim.

128 Chapter 5. Contributing



rewalt, Release 0.1.0

Returns
cube_degeneracy – The degeneracy.

Return type
Diagram

Raises
ValueError – If the index is out of range.

cube_connection(k, sign)
Returns one of the connections of the cube.

This is, by definition, the pullback of the diagram along self.shape.cube_connection(k, sign).

Parameters

• k (int) – Index of the connection, ranging from 0 to self.dim - 1.

• sign (str) – Side: '-' or '+'.

Returns
cube_face – The connection.

Return type
Diagram

Raises
ValueError – If the index is out of range.

5.6.5 diagrams.PointDiagram

class rewalt.diagrams.PointDiagram(ambient)
Bases: SimplexDiagram , CubeDiagram

Subclass of Diagram for diagrams whose shape is a point.

Methods

degeneracy(shape) Given a shape, returns the unique degenerate diagram
of that shape over the point.

degeneracy(shape)
Given a shape, returns the unique degenerate diagram of that shape over the point.

This is, by definition, the pullback of the point diagram along self.shape.terminal().

Parameters
shape (shapes.Shape) – The shape of the degenerate diagram.

Returns
degeneracy – The degenerate diagram.

Return type
Diagram

5.6. diagrams 129



rewalt, Release 0.1.0

5.7 shapes

Implements shapes of cells and diagrams.

rewalt.shapes.Shape() Inductive subclass of ogposets.OgPoset for shapes of
cells and diagrams.

rewalt.shapes.ShapeMap(ogmap, **params) An overlay of ogposets.OgMap for total maps between
Shape objects.

rewalt.shapes.Simplex() Subclass of Shape for oriented simplices.
rewalt.shapes.Cube() Subclass of Shape for oriented cubes.

5.7.1 shapes.Shape

class rewalt.shapes.Shape

Bases: OgPoset

Inductive subclass of ogposets.OgPoset for shapes of cells and diagrams.

Properly formed objects of the class are unique encodings of the regular molecules from the theory of diagram-
matic sets (plus the empty shape, which is not considered a regular molecule).

To create shapes, we start from basic constructors such as empty(), point(), or one of the named shape con-
structors, such as globe(), simplex(), cube().

Then we generate new shapes by gluing basic shapes together with paste(), to_inputs(), to_outputs(),
or by producing new higher-dimensional shapes with operations such as atom(), gray(), join().

When possible, the constructors place the shapes in appropriate subclasses of separate interest, which include the
globes, the oriented simplices, the oriented cubes, and the positive opetopes. This is to enable the specification
of special methods for subclasses of shapes.

The following diagram summarises the hierarchy of subclasses of shapes:

Simplex Cube OpetopeTree Theta
| |\ |\ | | |
| | \ | \ Opetope GlobeString
| | \| \ | /
| | \ \ Globe
| | |\ \/ |
Empty | | \ /\ |

| | \/ \ |
| | /\ \ |
| | / \ \ |
| |/ \ \|
Point Arrow

Currently only the Cube and Simplex classes have special methods implemented.

130 Chapter 5. Contributing



rewalt, Release 0.1.0

5.7. shapes 131



rewalt, Release 0.1.0

Methods

all_layerings() Returns an iterator on all layerings of a shape of di-
mension n into shapes with a single n-dimensional el-
ement, pasted along their (n-1)-dimensional bound-
ary.

arrow() Constructs the arrow, the unique 1-dimensional
atomic shape.

atom(fst, snd, **params) Given two shapes with identical round boundaries,
returns a new atomic shape whose input boundary is
the first one and output boundary the second one.

atom_inclusion(element) Returns the inclusion of the closure of an element,
which is an atomic shape, in the shape.

boundary([sign, dim]) Returns the inclusion of the boundary of a given ori-
entation and dimension into the shape.

cube([dim]) Constructs the oriented cube of a given dimension.
draw(**params) Bound version of strdiags.draw().
draw_boundaries(**params) Bound version of strdiags.draw_boundaries().
dual(shape, *dims, **params) Returns the shape with orientations reversed in given

dimensions.
empty() Constructs the initial, empty shape.
generate_layering() Assigns a layering to the shape, iterating through all

the layerings, and returns it.
globe([dim]) Constructs the globe of a given dimension.
gray(*shapes) Returns the Gray product of any number of shapes.
id() Returns the identity map on the shape.
inflate([collapsed]) Given a closed subset of the boundary of the shape,

forms a cylinder on the shape, with the sides incident
to the closed subset collapsed, and returns its projec-
tion map onto the original shape.

initial() Returns the unique map from the initial, empty shape.
join(*shapes) Returns the join of any number of shapes.
merge() Returns the unique atomic shape with the same

boundary, if the shape is round.
paste(fst, snd[, dim]) Given two shapes and k such that the output k-

boundary of the first is equal to the input k-boundary
of the second, returns their pasting along the match-
ing boundaries.

paste_along(fst, snd, **params) Given a span of shape maps, where one is the inclu-
sion of the input (resp output) k-boundary of a shape,
and the other the inclusion of a round subshape of the
output (resp input) k-boundary of another shape, re-
turns the pasting (pushout) of the two shapes along
the span.

point() Constructs the terminal shape, consisting of a single
point.

simplex([dim]) Constructs the oriented simplex of a given dimen-
sion.

suspend(shape[, n]) Returns the n-fold suspension of a shape.
terminal() Returns the unique map to the point, the terminal

shape.
theta(*thetas) Inductive constructor for the objects of the Theta cat-

egory, sometimes known as Batanin cells.
to_inputs(positions, other[, dim]) Returns the pasting of another shape along a round

subshape of the input k-boundary, specified by the
positions of its k-dimensional elements.

to_outputs(positions, other[, dim]) Returns the pasting of another shape along a round
subshape of the output k-boundary, specified by the
positions of its k-dimensional elements.

132 Chapter 5. Contributing



rewalt, Release 0.1.0

Attributes

isatom Returns whether the shape is an atom (has a greatest
element).

isround Shorthand for all().isround.
layers Returns the current layering of the shape.
rewrite_steps Returns the sequence of rewrite steps associated to

the current layering of the shape.

property isatom

Returns whether the shape is an atom (has a greatest element).

Returns
isatom – True if and only if the shape has a greatest element.

Return type
bool

Examples

>>> arrow = Shape.arrow()
>>> assert arrow.isatom
>>> assert not arrow.paste(arrow).isatom

property isround

Shorthand for all().isround.

property layers

Returns the current layering of the shape.

Returns
layers – The current layering.

Return type
list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> cospan = globe.paste(arrow).paste(
... arrow.paste(globe), cospan=True)
>>> shape = cospan.target
>>> assert shape.layers == [cospan.fst, cospan.snd]

property rewrite_steps

Returns the sequence of rewrite steps associated to the current layering of the shape.

The 0-th rewrite step is the input boundary of the shape. For n > 0, the n-th rewrite step is the output
boundary of the (n-1)-th layer.

Returns
rewrite_steps – The current sequence of rewrite steps.

5.7. shapes 133



rewalt, Release 0.1.0

Return type
list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> cospan = globe.paste(arrow).paste(
... arrow.paste(globe), cospan=True)
>>> shape = cospan.target
>>> assert shape.rewrite_steps == [
... cospan.fst.input,
... cospan.fst.output,
... cospan.snd.output]

static atom(fst, snd, **params)
Given two shapes with identical round boundaries, returns a new atomic shape whose input boundary is
the first one and output boundary the second one.

Parameters

• fst (Shape) – The input boundary shape.

• snd (Shape) – The output boundary shape.

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the input and output bound-
aries (default is False).

Returns
atom – The new atomic shape (optionally with the cospan of inclusions of its boundaries).

Return type
Shape | ogposets.OgMapPair

Raises
ValueError – If the boundaries do not match, or are not round.

Examples

We create a 2-dimensional cell shape with two input 1-cells and one output 2-cell.

>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> binary.draw(path='docs/_static/img/Shape_atom.png')

134 Chapter 5. Contributing



rewalt, Release 0.1.0

static paste(fst, snd, dim=None, **params)
Given two shapes and k such that the output k-boundary of the first is equal to the input k-boundary of the
second, returns their pasting along the matching boundaries.

Parameters

• fst (Shape) – The first shape.

• snd (Shape) – The second shape.

• dim (int, optional) – The dimension of the boundary along which they will be pasted
(default is min(fst.dim, snd.dim) - 1).

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the two shapes into the pasting
(default is False).

Returns
paste – The pasted shape (optionally with the cospan of inclusions of its components).

Return type
Shape | ogposets.OgMapPair

Raises
ValueError – If the boundaries do not match.

Examples

We can paste two 2-dimensional globes either “vertically” along their 1-dimensional boundary or “hori-
zontally” along their 0-dimensional boundary.

>>> globe = Shape.globe(2)
>>> vert = globe.paste(globe)
>>> horiz = globe.paste(globe, 0)
>>> vert.draw(path='docs/_static/img/Shape_paste_vert.png')

5.7. shapes 135



rewalt, Release 0.1.0

>>> horiz.draw(path='docs/_static/img/Shape_paste_horiz.png')

We can also check that the interchange equation holds.

>>> assert vert.paste(vert, 0) == horiz.paste(horiz)
>>> horiz.paste(horiz).draw(
... path='docs/_static/img/Shape_paste_interchange.png')

136 Chapter 5. Contributing



rewalt, Release 0.1.0

static paste_along(fst, snd, **params)
Given a span of shape maps, where one is the inclusion of the input (resp output) k-boundary of a shape,
and the other the inclusion of a round subshape of the output (resp input) k-boundary of another shape,
returns the pasting (pushout) of the two shapes along the span.

In practice, it is convenient to use to_inputs() and to_outputs() instead, where the data of the span
is specified by k and the positions of the k-dimensional elements in the round subshape along which the
pasting occurs.

Parameters

• fst (ShapeMap) – The first inclusion.

• snd (ShapeMap) – The second inclusion.

Keyword Arguments

• wfcheck (bool) – Check if the span gives rise to a well-formed pasting (default is True).

• cospan (bool) – Whether to return the cospan of inclusions of the two shapes into the
pasting (default is False).

Returns
paste_along – The pasted shape (optionally with the cospan of inclusions of its components).

Return type
Shape | ogposets.OgMapPair

Raises
ValueError – If the pair of maps is not an injective span.

to_outputs(positions, other, dim=None, **params)
Returns the pasting of another shape along a round subshape of the output k-boundary, specified by the
positions of its k-dimensional elements.

Parameters

• positions (list[int] | int) – The positions of the outputs along which to paste. If
given an integer n, interprets it as the list [n].

• other (Shape) – The other shape to paste.

5.7. shapes 137



rewalt, Release 0.1.0

• dim (int, optional) – The dimension of the boundary along which to paste (default is
self.dim - 1)

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the two shapes into the pasting
(default is False).

Returns
to_outputs – The pasted shape (optionally with the cospan of inclusions of its components).

Return type
Shape | ogposets.OgMapPair

Raises
ValueError – If the boundaries do not match, or the pasting does not produce a well-formed
shape.

Examples

We create a 2-simplex and visualise it as a string diagram with the positions parameter enabled.

>>> simplex = Shape.simplex(2)
>>> simplex.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs1.png')

We paste another 2-simplex to the output in position 2.

>>> paste1 = simplex.to_outputs(2, simplex)
>>> paste1.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs2.png')

138 Chapter 5. Contributing



rewalt, Release 0.1.0

Finally, we paste the dual of a 2-simplex to the outputs in positions 2, 3.

>>> paste2 = paste1.to_outputs([1, 3], simplex.dual())
>>> paste2.draw(
... positions=True, path='docs/_static/img/Shape_to_outputs3.png')

to_inputs(positions, other, dim=None, **params)
Returns the pasting of another shape along a round subshape of the input k-boundary, specified by the
positions of its k-dimensional elements.

Parameters

• positions (list[int] | int) – The positions of the inputs along which to paste. If given
an integer n, interprets it as the list [n].

• other (Shape) – The other shape to paste.

5.7. shapes 139



rewalt, Release 0.1.0

• dim (int, optional) – The dimension of the boundary along which to paste (default is
self.dim - 1)

Keyword Arguments
cospan (bool) – Whether to return the cospan of inclusions of the two shapes into the pasting
(default is False).

Returns
to_inputs – The pasted shape (optionally with the cospan of inclusions of its components).

Return type
Shape | ogposets.OgMapPair

Raises
ValueError – If the boundaries do not match, or the pasting does not produce a well-formed
shape.

Examples

We work dually to the example for to_outputs().

>>> binary = Shape.simplex(2).dual()
>>> binary.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs1.png')

>>> paste1 = binary.to_inputs(1, binary)
>>> paste1.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs2.png')

140 Chapter 5. Contributing



rewalt, Release 0.1.0

>>> paste2 = paste1.to_inputs([0, 1], binary.dual())
>>> paste2.draw(
... positions=True, path='docs/_static/img/Shape_to_inputs3.png')

static suspend(shape, n=1)
Returns the n-fold suspension of a shape.

This static method can be also used as a bound method after an object is initialised, that is, shape.
suspend(n) is equivalent to suspend(shape, n).

Parameters

• shape (Shape) – The object to suspend.

• n (int, optional) – The number of iterations of the suspension (default is 1).

5.7. shapes 141



rewalt, Release 0.1.0

Returns
suspension – The suspended shape.

Return type
Shape

Examples

The suspension of the point is the arrow, and the suspension of an arrow is the 2-globe.

>>> assert Shape.point().suspend() == Shape.arrow()
>>> assert Shape.arrow().suspend() == Shape.globe(2)

In general, the suspension of the n-globe is the (n+1)-globe.

static gray(*shapes)
Returns the Gray product of any number of shapes.

This method can be called with the math operator *, that is, fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method after an object is initialised, that is, fst.
gray(*shapes) is equivalent to gray(fst, *shapes).

Parameters
*shapes (Shape) – Any number of shapes.

Returns
gray – The Gray product of the arguments.

Return type
Shape

Example

The point is a unit for the Gray product.

>>> point = Shape.point()
>>> arrow = Shape.arrow()
>>> assert point*arrow == arrow*point == arrow

The Gray product of two arrows is the oriented square (2-cube).

>>> arrow = Shape.arrow()
>>> assert arrow*arrow == Shape.cube(2)

In general, the Gray product of the n-cube with the k-cube is the (n+k)-cube.

static join(*shapes)
Returns the join of any number of shapes.

This method can be called with the shift operators >> and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to join(snd, fst).

This static method can also be used as a bound method after an object is initialised, that is, fst.
join(*shapes) is equivalent to join(fst, *shapes).

Parameters
*shapes (Shape) – Any number of shapes.

142 Chapter 5. Contributing



rewalt, Release 0.1.0

Returns
join – The join of the arguments.

Return type
Shape

Examples

The empty shape is a unit for the join.

>>> empty = Shape.empty()
>>> point = Shape.point()
>>> assert empty >> point == point >> empty == point

The join of two points is the arrow, and the join of an arrow and a point is the 2-simplex.

>>> arrow = Shape.arrow()
>>> assert point >> point == Shape.arrow()
>>> assert arrow >> point == Shape.simplex(2)

In general, the join of an n-simplex with a k-simplex is the (n+k+1)-simplex.

static dual(shape, *dims, **params)
Returns the shape with orientations reversed in given dimensions.

The dual in all dimensions can also be called with the bit negation operator ~, that is, ~shape is equivalent
to shape.dual().

This static method can be also used as a bound method after an object is initialised, that is, shape.
dual(*dims) is equivalent to dual(shape, *dims).

Parameters

• shape (Shape) – A shape.

• *dims (int) – Any number of dimensions; if none, defaults to all dimensions.

Returns
dual – The shape, dualised in the given dimensions.

Return type
Shape

Examples

>>> arrow = Shape.arrow()
>>> simplex = Shape.simplex(2)
>>> binary = arrow.paste(arrow).atom(arrow)
>>> assert binary == simplex.dual()

>>> assoc_l = binary.to_inputs(0, binary)
>>> assoc_r = binary.to_inputs(1, binary)
>>> assert assoc_r == assoc_l.dual(1)

5.7. shapes 143



rewalt, Release 0.1.0

merge()

Returns the unique atomic shape with the same boundary, if the shape is round.

Returns
merge – The unique atomic shape with the same boundary.

Return type
Shape

Raises
ValueError – If the shape is not round.

Examples

We create a 2-dimensional shape with two input 1-cells and one output 1-cell, and paste it to itself along
one of the inputs.

>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> to_merge = binary.to_inputs(1, binary)
>>> to_merge.draw(path='docs/_static/img/Shape_merge1.png')

The “merged” shape is the 2-dimensional atom with three input 2-cells and one output 1-cell.

>>> merged = to_merge.merge()
>>> merged.draw(path='docs/_static/img/Shape_merge2.png')

144 Chapter 5. Contributing



rewalt, Release 0.1.0

static empty()

Constructs the initial, empty shape.

Returns
empty – The empty shape.

Return type
Empty

static point()

Constructs the terminal shape, consisting of a single point.

Returns
point – The point.

Return type
Point

static arrow()

Constructs the arrow, the unique 1-dimensional atomic shape.

Returns
arrow – The arrow.

Return type
Arrow

static simplex(dim=-1)
Constructs the oriented simplex of a given dimension.

Parameters
dim (int) – The dimension of the simplex (default is -1).

Returns
simplex – The simplex of the requested dimension.

Return type
Simplex

5.7. shapes 145



rewalt, Release 0.1.0

static cube(dim=0)
Constructs the oriented cube of a given dimension.

Parameters
dim (int) – The dimension of the cube (default is 0).

Returns
cube – The cube of the requested dimension.

Return type
Cube

static globe(dim=0)
Constructs the globe of a given dimension.

Parameters
dim (int) – The dimension of the globe (default is 0).

Returns
globe – The globe of the requested dimension.

Return type
Globe

static theta(*thetas)
Inductive constructor for the objects of the Theta category, sometimes known as Batanin cells.

Batanin cells are in 1-to-1 correspondence with finite plane trees. The constructor is based on this cor-
respondence, using the well-known inductive definition of plane trees: given any number k of Batanin
cells, it returns the Batanin cell encoded by a root with k children, to which the k plane trees encoding the
arguments are attached.

Parameters
thetas (Theta) – Any number of Batanin cells.

Returns
theta – The resulting Batanin cell.

Return type
Theta

Examples

Every globe is a Batanin cell, encoded by the linear tree of length equal to its dimension.

>>> assert Shape.theta() == Shape.globe(0)
>>> assert Shape.theta(Shape.theta()) == Shape.globe(1)
>>> assert Shape.theta(Shape.theta(Shape.theta())) == Shape.globe(2)

The tree with one root with n children corresponds to a string of n arrows.

>>> point = Shape.theta()
>>> arrow = Shape.arrow()
>>> assert Shape.theta(point, point) == arrow.paste(arrow)

id()

Returns the identity map on the shape.

146 Chapter 5. Contributing



rewalt, Release 0.1.0

Returns
id – The identity map on the object.

Return type
ShapeMap

boundary(sign=None, dim=None)
Returns the inclusion of the boundary of a given orientation and dimension into the shape.

Note that input and output boundaries of shapes are shapes, so they are returned as shape maps; however,
the entire (input + output) boundary of a shape is not a shape, so it is returned simply as a map of oriented
graded posets.

Parameters

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary – The inclusion of the requested boundary into the object.

Return type
ShapeMap | OgMap

Examples

>>> point = Shape.point()
>>> arrow = Shape.arrow()
>>> binary = arrow.paste(arrow).atom(arrow)
>>> assert binary.boundary('-').source == arrow.paste(arrow)
>>> assert binary.boundary('+').source == arrow
>>> assert binary.boundary('-', 0).source == point
>>> assert binary.boundary('-').target == binary

atom_inclusion(element)
Returns the inclusion of the closure of an element, which is an atomic shape, in the shape.

Parameters
element (El) – An element of the shape.

Returns
atom_inclusion – The inclusion of the closure of the element.

Return type
ShapeMap

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> whisker_l = arrow.paste(globe)
>>> assert whisker_l.atom_inclusion(El(2, 0)).source == globe

initial()

Returns the unique map from the initial, empty shape.

5.7. shapes 147



rewalt, Release 0.1.0

Returns
initial – The unique map from the empty shape.

Return type
ShapeMap

Examples

>>> point = Shape.point()
>>> empty = Shape.empty()
>>> assert point.initial() == empty.terminal()
>>> assert empty.initial() == empty.id()

terminal()

Returns the unique map to the point, the terminal shape.

Returns
terminal – The unique map to the point.

Return type
ShapeMap

Examples

>>> point = Shape.point()
>>> assert point.terminal() == point.id()

inflate(collapsed=None)
Given a closed subset of the boundary of the shape, forms a cylinder on the shape, with the sides incident
to the closed subset collapsed, and returns its projection map onto the original shape.

This is mainly used in constructing units and unitors on diagrams; see diagrams.Diagram.unit(),
diagrams.Diagram.lunitor(), diagrams.Diagram.runitor().

Parameters
collapsed (Closed, optional) – A closed subset of the boundary of the shape (default is the
entire boundary).

Returns
inflate – The projection map of the “partially collapsed cylinder” onto the shape.

Return type
Closed

Raises
ValueError – If collapsed is not a subset of the boundary.

all_layerings()

Returns an iterator on all layerings of a shape of dimension n into shapes with a single n-dimensional
element, pasted along their (n-1)-dimensional boundary.

Returns
all_layerings – The iterator on all layerings of the shape.

Return type
Iterable

148 Chapter 5. Contributing



rewalt, Release 0.1.0

generate_layering()

Assigns a layering to the shape, iterating through all the layerings, and returns it.

Returns
layers – The generated layering.

Return type
list[ShapeMap]

Examples

>>> arrow = Shape.arrow()
>>> globe = Shape.globe(2)
>>> chain = globe.paste(globe, 0)
>>> chain.generate_layering()
>>> assert chain.layers[0].source == arrow.paste(globe)
>>> assert chain.layers[1].source == globe.paste(arrow)
>>> chain.generate_layering()
>>> assert chain.layers[0].source == globe.paste(arrow)
>>> assert chain.layers[1].source == arrow.paste(globe)

draw(**params)
Bound version of strdiags.draw().

Calling x.draw(**params) is equivalent to calling strdiags.draw(x, **params).

draw_boundaries(**params)
Bound version of strdiags.draw_boundaries().

Calling x.draw_boundaries(**params) is equivalent to calling strdiags.draw_boundaries(x,
**params).

5.7.2 shapes.ShapeMap

class rewalt.shapes.ShapeMap(ogmap, **params)
Bases: OgMap

An overlay of ogposets.OgMap for total maps between Shape objects.

It is used to extend constructions of shapes functorially to their maps, in a way that is compatible with the unique
representation of shapes by their underlying ogposets.OgPoset objects.

The most common ShapeMap objects are created by methods of Shape such as Shape.boundary() and Shape.
inflate(), or of its subclasses, such as Simplex.simplex_degeneracy() or Cube.cube_connection().

Nevertheless, occasionally we may need to define a map explicitly, in which case we first define an object f of
class ogposets.OgMap, then upgrade it to a ShapeMap with the constructor ShapeMap(f).

Parameters
ogmap (ogposets.OgMap) – A total map between shapes.

Keyword Arguments
wfcheck (bool) – Check whether the given map is a total map between shapes (default is True).

5.7. shapes 149



rewalt, Release 0.1.0

Methods

draw(**params) Bound version of strdiags.draw().
draw_boundaries(**params) Bound version of strdiags.draw_boundaries().
dual(*dims) Functorial extension of OgPoset.dual() to maps of

oriented graded posets.
generate_layering() Shorthand for source.generate_layering().
gray(*maps) Functorial extension of OgPoset.gray() to maps of

oriented graded posets.
join(*maps) Functorial extension of OgPoset.join() to maps of

oriented graded posets.
then(other, *others) Returns the composite with other maps or pairs of

maps of oriented graded posets, when defined.

Attributes

layers Returns the current layering of the map's source,
composed with the map.

rewrite_steps Returns the sequence of rewrite steps associated to
the current layering of the map's source, composed
with the map.

then(other, *others)
Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

If given an OgMapPair as argument, it returns the pair of composites of the map with each map in the pair.

Parameters

• other (OgMap | OgMapPair) – The first map or pair of maps to follow.

• *others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to
follow.

Returns
composite – The composite with all the other arguments.

Return type
OgMap | OgMapPair

Notes

If all the maps have type shapes.ShapeMap, their composite has the same type.

property layers

Returns the current layering of the map’s source, composed with the map.

Returns
layers – The source’s current layering, composed with the map.

Return type
list[ShapeMap]

150 Chapter 5. Contributing



rewalt, Release 0.1.0

property rewrite_steps

Returns the sequence of rewrite steps associated to the current layering of the map’s source, composed with
the map.

Returns
rewrite_steps – The source’s current sequence of rewrite steps, composed with the map.

Return type
list[ShapeMap]

static gray(*maps)
Functorial extension of OgPoset.gray() to maps of oriented graded posets.

This method can be called with the math operator *, that is, fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method, that is, fst.gray(*maps) is equivalent to
gray(fst, *maps).

Parameters
*maps (OgMap) – Any number of maps of oriented graded posets.

Returns
gray – The Gray product of the arguments.

Return type
OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their Gray product.

static join(*maps)
Functorial extension of OgPoset.join() to maps of oriented graded posets.

This method can be called with the shift operators >> and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to join(snd, fst).

This static method can also be used as a bound method, that is, fst.join(*maps) is equivalent to
join(fst, *maps).

Parameters
*maps (OgMap) – Any number of maps of oriented graded posets.

Returns
join – The join of the arguments.

Return type
OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their join.

dual(*dims)
Functorial extension of OgPoset.dual() to maps of oriented graded posets.

The dual in all dimensions can also be called with the negation operator ~, that is, ~ogmap is equivalent to
ogmap.dual().

5.7. shapes 151



rewalt, Release 0.1.0

This static method can be also used as a bound method, that is, self.dual(*dims) is equivalent to
dual(self, *dims).

Parameters

• ogmap (OgMap) – A map of oriented graded posets.

• *dims (int) – Any number of dimensions; if none, defaults to all dimensions.

Returns
dual – The map dualised in the given dimensions.

Return type
OgMap

Notes

If the map is a ShapeMap, so is its dual.

generate_layering()

Shorthand for source.generate_layering().

draw(**params)
Bound version of strdiags.draw().

Calling f.draw(**params) is equivalent to calling strdiags.draw(f, **params).

draw_boundaries(**params)
Bound version of strdiags.draw_boundaries().

Calling f.draw_boundaries(**params) is equivalent to calling strdiags.draw_boundaries(f,
**params).

5.7.3 shapes.Simplex

class rewalt.shapes.Simplex

Bases: Shape

Subclass of Shape for oriented simplices.

The methods of this class provide a full implementation of the category of simplices, which is generated by the
face and degeneracy maps between simplices one dimension apart.

Use Shape.simplex() to construct.

Examples

We create a 1-simplex (arrow), a 2-simplex (triangle), and a 3-simplex (tetrahedron).

>>> arrow = Shape.simplex(1)
>>> triangle = Shape.simplex(2)
>>> tetra = Shape.simplex(3)

We can then check some of the simplicial relations between degeneracy and face maps.

152 Chapter 5. Contributing



rewalt, Release 0.1.0

>>> map1 = triangle.simplex_degeneracy(2).then(
... arrow.simplex_degeneracy(1))
>>> map2 = triangle.simplex_degeneracy(1).then(
... arrow.simplex_degeneracy(1))
>>> assert map1 == map2

>>> map3 = tetra.simplex_face(2).then(
... triangle.simplex_degeneracy(2))
>>> assert map3 == triangle.id()

>>> map4 = tetra.simplex_face(0).then(
... triangle.simplex_degeneracy(2))
>>> map5 = arrow.simplex_degeneracy(1).then(
... triangle.simplex_face(0))
>>> assert map4 == map5

Methods

simplex_degeneracy(k) Returns one of the collapse (degeneracy) maps of the
simplex one dimension higher.

simplex_face(k) Returns one of the face inclusion maps of the simplex.

simplex_face(k)
Returns one of the face inclusion maps of the simplex.

Parameters
k (int) – The index of the face map, ranging from 0 to self.dim.

Returns
simplex_face – The face map.

Return type
ShapeMap

Raises
ValueError – If the index is out of range.

simplex_degeneracy(k)
Returns one of the collapse (degeneracy) maps of the simplex one dimension higher.

Parameters
k (int) – The index of the degeneracy map, ranging from 0 to self.dim.

Returns
simplex_degeneracy – The degeneracy map.

Return type
ShapeMap

Raises
ValueError – If the index is out of range.

5.7. shapes 153



rewalt, Release 0.1.0

5.7.4 shapes.Cube

class rewalt.shapes.Cube

Bases: Shape

Subclass of Shape for oriented cubes.

The methods of this class provide a full implementation of the category of cubes with connections, which is
generated by the face, degeneracy, and connection maps between cubes one dimension apart.

Use Shape.cube() to construct.

Examples

We create a 1-cube (arrow), 2-cube (square), and 3-cube (cube).

>>> arrow = Shape.cube(1)
>>> square = Shape.cube(2)
>>> cube = Shape.cube(3)

We can then check some of the relations between cubical face, connection, and degeneracy maps.

>>> map1 = square.cube_degeneracy(2).then(
... arrow.cube_degeneracy(1))
>>> map2 = square.cube_degeneracy(1).then(
... arrow.cube_degeneracy(1))
>>> assert map1 == map2

>>> map3 = square.cube_face(0, '+').then(
... cube.cube_face(2, '-'))
>>> map4 = square.cube_face(1, '-').then(
... cube.cube_face(0, '+'))
>>> assert map3 == map4

>>> map5 = square.cube_connection(1, '-').then(
... arrow.cube_connection(0, '-'))
>>> map6 = square.cube_connection(0, '-').then(
... arrow.cube_connection(0, '-'))
>>> assert map5 == map6

Methods

cube_connection(k, sign) Returns one of the "connection" collapse maps of the
cube one dimension higher.

cube_degeneracy(k) Returns one of the "degeneracy" collapse maps of the
cube one dimension higher.

cube_face(k, sign) Returns one of the face inclusion maps of the cube.

cube_face(k, sign)
Returns one of the face inclusion maps of the cube.

Parameters

154 Chapter 5. Contributing



rewalt, Release 0.1.0

• k (int) – Index of the face map, ranging from 0 to self.dim - 1.

• sign (str) – Side: '-' or '+'.

Returns
cube_face – The face map.

Return type
ShapeMap

Raises
ValueError – If the index is out of range.

cube_degeneracy(k)
Returns one of the “degeneracy” collapse maps of the cube one dimension higher.

Parameters
k (int) – The index of the degeneracy map, ranging from 0 to self.dim.

Returns
cube_degeneracy – The degeneracy map.

Return type
ShapeMap

Raises
ValueError – If the index is out of range.

cube_connection(k, sign)
Returns one of the “connection” collapse maps of the cube one dimension higher.

Parameters

• k (int) – Index of the connection map, ranging from 0 to self.dim - 1.

• sign (str) – Side: '-' or '+'.

Returns
cube_face – The connection map.

Return type
ShapeMap

Raises
ValueError – If the index is out of range.

5.8 ogposets

Implements oriented graded posets, their elements, subsets, and maps.

5.8. ogposets 155



rewalt, Release 0.1.0

rewalt.ogposets.OgPoset(face_data, ...) Class for oriented graded posets, that is, finite graded
posets with an orientation, defined as a {'-', '+'}-
labelling of the edges of their Hasse diagram.

rewalt.ogposets.OgMap(source, target[, mapping]) Class for (partial) maps of oriented graded posets, com-
patible with boundaries.

rewalt.ogposets.El(dim, pos) Class for elements of an oriented graded poset.
rewalt.ogposets.GrSet(*elements) Class for sets of elements of an oriented graded poset,

graded by their dimension.
rewalt.ogposets.GrSubset(support, ambient, ...) Class for graded subsets, that is, pairs of a GrSet and an

"ambient" OgPoset, where the first is seen as a subset
of the second.

rewalt.ogposets.Closed(support, ambient, ...) Subclass of GrSubset for (downwards) closed subsets.
rewalt.ogposets.OgMapPair(fst, snd) Class for pairs of maps of oriented graded posets.

5.8.1 ogposets.OgPoset

class rewalt.ogposets.OgPoset(face_data, coface_data, **params)
Bases: object

Class for oriented graded posets, that is, finite graded posets with an orientation, defined as a {'-', '+'}-
labelling of the edges of their Hasse diagram.

In this implementation, the elements of a given dimension (grade) are linearly ordered, so that each element is
identified by its dimension and the position in the linear order, encoded as an object of class El.

If El(n, k) covers El(n-1, j) with orientation o, we say that El(n-1, j) is an input face of El(n, k) if
o == '-' and an output face of El(n, k) if o == '+'.

Defining an OgPoset directly is not recommended; use constructors of shapes.Shape instead.

Parameters

• face_data (list[list[dict[set[int]]]]) – Data encoding the oriented graded poset
as follows: j in face_data[n][k][o] if and only if El(n, k) covers El(n-1, j)with
orientation o, where o == '-' or o == '+'.

• coface_data (list[list[dict[set[int]]]]) – Data encoding the oriented graded
poset as follows: j in coface_data[n][k][o] if and only if El(n+1, j) covers El(n,
k) with orientation o, where o == '-' or o == '+'.

Keyword Arguments

• wfcheck (bool) – Check that the data is well-formed (default is True)

• matchcheck (bool) – Check that face_data and coface_data match (default is True)

156 Chapter 5. Contributing



rewalt, Release 0.1.0

Notes

Each of face_data, coface_data determines the other uniquely. There is an alternative constructor
from_face_data() that computes coface_data from face_data.

Examples

Let us construct explicitly the “oriented face poset” of an arrow, or directed edge.

>>> face_data = [
... [
... {'-': set(), '+': set()},
... {'-': set(), '+': set()},
... ], [
... {'-': {0}, '+': {1}}
... ]]
>>> coface_data = [
... [
... {'-': {0}, '+': set()},
... {'-': set(), '+': {0}},
... ], [
... {'-': set(), '+': set()}
... ]]
>>> arrow = OgPoset(face_data, coface_data)

This has two 0-dimensional elements and one 1-dimensional element.

>>> arrow.size
[2, 1]

We can visualise its Hasse diagram, with orientation conveyed by colour (magenta for input, blue for output) and
direction of arrows.

>>> arrow.hasse(path='docs/_static/img/OgPoset_arrow.png')

5.8. ogposets 157



rewalt, Release 0.1.0

We can ask for the faces and cofaces of a specific element.

>>> arrow.faces(El(1, 0), '-')
GrSet(El(0, 0))
>>> arrow.cofaces(El(0, 1))
GrSet(El(1, 0))

We can construct other oriented graded posets using various operations, such as suspensions, Gray products,
joins, or duals.

>>> print(arrow.suspend())
OgPoset with [2, 2, 1] elements
>>> print(arrow * arrow)
OgPoset with [4, 4, 1] elements
>>> print(arrow >> arrow)
OgPoset with [4, 6, 4, 1] elements
>>> print(arrow.dual())
OgPoset with [2, 1] elements

158 Chapter 5. Contributing



rewalt, Release 0.1.0

Methods

all() Returns the closed subset of all elements.
bot() Returns the object augmented with a bottom element,

covered with orientation '+'.
boundary([sign, dim]) Returns the inclusion of the boundary of a given ori-

entation and dimension into the object.
co() Returns the dual() in all even dimensions.
cofaces(element[, sign]) Returns the cofaces of an element as a graded set.
coproduct(fst, snd) Returns the coproduct cospan of two oriented graded

posets.
disjoint_union(fst, snd) Returns the disjoint union of two oriented graded

posets, that is, the target of their coproduct cospan.
dual(ogp, *dims) Returns an oriented graded poset with orientations

reversed in given dimensions.
empty() Returns the initial oriented graded poset, with no el-

ements.
faces(element[, sign]) Returns the faces of an element as a graded set.
from_face_data(face_data, **params) Alternative constructor computing coface_data from

face_data.
gray(*ogps) Returns the Gray product of any number of oriented

graded posets.
hasse(**params) Bound version of hasse.draw().
id() Returns the identity map on the object.
image(ogmap) Returns the image of the object through a map.
join(*ogps) Returns the join of any number of oriented graded

posets.
maximal() Returns the subset of maximal elements, that is, those

that are not covered by any elements.
none() Returns the empty closed subset.
op() Returns the dual() in all odd dimensions.
point() Returns the terminal oriented graded poset, with a

single element.
suspend(ogp[, n]) Returns the n-fold suspension of an oriented graded

poset.
underset(*elements) Returns the closure of a set of elements in the object.

Attributes

as_chain Returns a "chain complex" representation of the face
data.

coface_data Returns the coface data as given to the object con-
structor.

dim Returns the dimension of the object, that is, the max-
imum of the dimensions of its elements.

face_data Returns the face data as given to the object construc-
tor.

input Alias for boundary('-').
output Alias for boundary('+').
size Returns the number of elements in each dimension as

a list.

5.8. ogposets 159



rewalt, Release 0.1.0

property face_data

Returns the face data as given to the object constructor.

An OgPoset is meant to be immutable; create a new object if you need to modify the face data.

Returns
face_data – The face data as given to the object constructor.

Return type
list[list[dict[set[int]]]]

property coface_data

Returns the coface data as given to the object constructor.

An OgPoset is meant to be immutable; create a new object if you need to modify the coface data.

Returns
coface_data – The coface data as given to the object constructor.

Return type
list[list[dict[set[int]]]]

property size

Returns the number of elements in each dimension as a list.

Returns
size – The k th entry is the number of k -dimensional elements.

Return type
list[int]

property dim

Returns the dimension of the object, that is, the maximum of the dimensions of its elements.

Returns
dim – The dimension of the object.

Return type
int

property as_chain

Returns a “chain complex” representation of the face data.

Returns
chain – Encodes the face data as follows: chain[n][i][j] == 1 if El(n, i) is an output
face of El(n+1, j), -1 if it is an input face, 0 otherwise.

Return type
list[numpy.array]

all()

Returns the closed subset of all elements.

Returns
all – The closed subset of all elements of the object.

Return type
Closed

none()

Returns the empty closed subset.

160 Chapter 5. Contributing



rewalt, Release 0.1.0

Returns
none – The closed subset with no elements.

Return type
Closed

underset(*elements)
Returns the closure of a set of elements in the object.

Parameters
elements (El) – Any number of elements.

Returns
underset – The downwards closure of the given elements.

Return type
Closed

maximal()

Returns the subset of maximal elements, that is, those that are not covered by any elements.

Returns
maximal – The subset of maximal elements.

Return type
GrSubset

faces(element, sign=None)
Returns the faces of an element as a graded set.

Parameters

• element (El) – An element of the object.

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

Returns
faces – The set of faces of the given element.

Return type
GrSet

cofaces(element, sign=None)
Returns the cofaces of an element as a graded set.

Parameters

• element (El) – An element of the object.

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

Returns
cofaces – The set of cofaces of the given element.

Return type
GrSet

id()

Returns the identity map on the object.

Returns
id – The identity map on the object.

5.8. ogposets 161



rewalt, Release 0.1.0

Return type
OgMap

image(ogmap)
Returns the image of the object through a map.

Parameters
ogmap (OgMap) – A map from the object to another OgPoset.

Returns
image – The image of the object through the given map.

Return type
Closed

boundary(sign=None, dim=None)
Returns the inclusion of the boundary of a given orientation and dimension into the object.

Parameters

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary – The inclusion of the requested boundary into the object.

Return type
OgMap

property input

Alias for boundary('-').

property output

Alias for boundary('+').

classmethod from_face_data(face_data, **params)
Alternative constructor computing coface_data from face_data.

Parameters
face_data (list[list[dict[set[int]]]]) – As in the main constructor.

Keyword Arguments
wfcheck (bool) – Check that the data is well-formed (default is True).

static empty()

Returns the initial oriented graded poset, with no elements.

Returns
empty – The empty oriented graded poset.

Return type
OgPoset

static point()

Returns the terminal oriented graded poset, with a single element.

Returns
point – The oriented graded poset with a single element.

Return type
OgPoset

162 Chapter 5. Contributing



rewalt, Release 0.1.0

static coproduct(fst, snd)
Returns the coproduct cospan of two oriented graded posets.

Parameters

• fst (OgPoset) – The first factor of the coproduct.

• snd (OgPoset) – The second factor of the coproduct.

Returns
coproduct – The coproduct cospan.

Return type
OgMapPair

static disjoint_union(fst, snd)
Returns the disjoint union of two oriented graded posets, that is, the target of their coproduct cospan.

This method can be called with the math operator +, that is, fst + snd is equivalent to
disjoint_union(fst, snd).

Parameters

• fst (OgPoset) – The first factor of the disjoint union.

• snd (OgPoset) – The second factor of the disjoint union.

Returns
disjoint_union – The disjoint union of the two.

Return type
OgPoset

static suspend(ogp, n=1)
Returns the n-fold suspension of an oriented graded poset.

This static method can be also used as a bound method after an object is initialised, that is, ogp.
suspend(n) is equivalent to suspend(ogp, n).

Parameters

• ogp (OgPoset) – The object to suspend.

• n (int, optional) – The number of iterations of the suspension (default is 1).

Returns
suspension – The suspended object.

Return type
OgPoset

static gray(*ogps)
Returns the Gray product of any number of oriented graded posets.

This method can be called with the math operator *, that is, fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method after an object is initialised, that is, fst.
gray(*ogps) is equivalent to gray(fst, *ogps).

Parameters
*ogps (OgPoset) – Any number of oriented graded posets.

Returns
gray – The Gray product of the arguments.

5.8. ogposets 163



rewalt, Release 0.1.0

Return type
OgPoset

bot()

Returns the object augmented with a bottom element, covered with orientation '+'.

Returns
bot – The object augmented with a bottom element.

Return type
OgPoset

static join(*ogps)
Returns the join of any number of oriented graded posets.

This method can be called with the shift operators >> and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to join(snd, fst).

This static method can also be used as a bound method after an object is initialised, that is, fst.
join(*ogps) is equivalent to join(fst, *ogps).

Parameters
*ogps (OgPoset) – Any number of oriented graded posets.

Returns
join – The join of the arguments.

Return type
OgPoset

static dual(ogp, *dims)
Returns an oriented graded poset with orientations reversed in given dimensions.

The dual in all dimensions can also be called with the bit negation operator ~, that is, ~ogp is equivalent to
ogp.dual().

This static method can be also used as a bound method after an object is initialised, that is, ogp.
dual(*dims) is equivalent to dual(ogp, *dims).

Parameters

• ogp (OgPoset) – An oriented graded poset.

• *dims (int) – Any number of dimensions; if none, defaults to all dimensions.

Returns
dual – The oriented graded poset, dualised in the given dimensions.

Return type
OgPoset

op()

Returns the dual() in all odd dimensions.

co()

Returns the dual() in all even dimensions.

hasse(**params)
Bound version of hasse.draw().

Calling x.hasse(**params) is equivalent to calling hasse.draw(x, **params).

164 Chapter 5. Contributing



rewalt, Release 0.1.0

5.8.2 ogposets.OgMap

class rewalt.ogposets.OgMap(source, target, mapping=None, **params)
Bases: object

Class for (partial) maps of oriented graded posets, compatible with boundaries.

To define a map on one element, it must have been defined on all elements below it. The assignment can be
made all at once, or element by element. Once the map has been defined on an element, the assignment cannot
be modified.

Parameters

• source (OgPoset) – The source (domain) of the map.

• target (OgPoset) – The target (codomain) of the map.

• mapping (list[list[El]], optional) – Data specifying the partial map as follows:
mapping[n][k] == El(m, j) if the map sends El(n, k) to El(m, j), and None if the
map is undefined on El(n, k) (default is the nowhere defined map).

Keyword Arguments
wfcheck (bool) – Check whether the data defines a well-formed map compatible with all bound-
aries (default is True).

Notes

Objects of the class are callable on objects of type El (returning the image of an element) and of type GrSubset
and GrSet (returning the image of a subset of their source).

Examples

Let us create two simple oriented graded posets, the “point” and the “arrow”.

>>> point = OgPoset.point()
>>> arrow = point >> point

We define the map that collapses the arrow onto the point. First we create a nowhere defined map.

>>> collapse = OgMap(arrow, point)
>>> assert not collapse.istotal

We declare the assignment first on the 0-dimensional elements, then on the single 1-dimensional element. Trying
to do otherwise results in a ValueError.

>>> collapse[El(0, 0)] = El(0, 0)
>>> collapse[El(0, 1)] = El(0, 0)
>>> collapse[El(1, 0)] = El(0, 0)

We can check various properties of the map.

>>> assert collapse.istotal
>>> assert collapse.issurjective
>>> assert not collapse.isinjective

Alternatively, we could have defined the map all at once, as follows.

5.8. ogposets 165



rewalt, Release 0.1.0

>>> mapping = [[El(0, 0), El(0, 0)], [El(0, 0)]]
>>> assert collapse == OgMap(arrow, point, mapping)

Methods

bot() Functorial extension of OgPoset.bot() to maps.
boundary([sign, dim]) Returns the map restricted to a specified boundary of

its source.
co() Returns the dual in all even dimensions.
dual(ogmap, *dims) Functorial extension of OgPoset.dual() to maps of

oriented graded posets.
gray(*maps) Functorial extension of OgPoset.gray() to maps of

oriented graded posets.
hasse(**params) Bound version of hasse.draw().
image() Returns the image of the map.
inv() Returns the inverse of the map if it is an isomorphism.
isdefined(element) Returns whether the map is defined on a given ele-

ment.
join(*maps) Functorial extension of OgPoset.join() to maps of

oriented graded posets.
op() Returns the dual in all odd dimensions.
then(other, *others) Returns the composite with other maps or pairs of

maps of oriented graded posets, when defined.

Attributes

input Alias for boundary('-').
isinjective Returns whether the map is injective.
isiso Returns whether the map is an isomorphism, that is,

total, injective, and surjective.
issurjective Returns whether the map is surjective.
istotal Returns whether the map is total.
mapping Returns the data specifying the map's assignments.
output Alias for boundary('+').
source Returns the source (domain) of the map.
target Returns the target (codomain) of the map.

property source

Returns the source (domain) of the map.

Returns
source – The source of the map.

Return type
OgPoset

property target

Returns the target (codomain) of the map.

Returns
target – The target of the map.

166 Chapter 5. Contributing



rewalt, Release 0.1.0

Return type
OgPoset

property mapping

Returns the data specifying the map’s assignments.

Returns
mapping – The mapping data.

Return type
list[list[El]]

property istotal

Returns whether the map is total.

Returns
istotal – True if and only if the map is total.

Return type
bool

property isinjective

Returns whether the map is injective.

Returns
isinjective – True if and only if the map is injective.

Return type
bool

property issurjective

Returns whether the map is surjective.

Returns
issurjective – True if and only if the map is surjective.

Return type
bool

property isiso

Returns whether the map is an isomorphism, that is, total, injective, and surjective.

Returns
isiso – True if and only if the map is an isomorphism.

Return type
bool

isdefined(element)
Returns whether the map is defined on a given element.

Parameters
element (El) – The element to check.

Returns
isdefined – True if and only if the map is defined on the element.

Return type
bool

5.8. ogposets 167



rewalt, Release 0.1.0

then(other, *others)
Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

If given an OgMapPair as argument, it returns the pair of composites of the map with each map in the pair.

Parameters

• other (OgMap | OgMapPair) – The first map or pair of maps to follow.

• *others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to
follow.

Returns
composite – The composite with all the other arguments.

Return type
OgMap | OgMapPair

Notes

If all the maps have type shapes.ShapeMap, their composite has the same type.

inv()

Returns the inverse of the map if it is an isomorphism.

Returns
inv – The inverse of the map, if defined.

Return type
OgMap

Raises
ValueError – If the map is not an isomorphism.

image()

Returns the image of the map.

Returns
image – The image of the source through the map.

Return type
Closed

boundary(sign=None, dim=None)
Returns the map restricted to a specified boundary of its source.

Parameters

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary – The map restricted to the requested boundary.

Return type
OgMap

property input

Alias for boundary('-').

168 Chapter 5. Contributing



rewalt, Release 0.1.0

property output

Alias for boundary('+').

bot()

Functorial extension of OgPoset.bot() to maps.

Returns
bot – The map extended to a map from source.bot to target.bot.

Return type
OgMap

static gray(*maps)
Functorial extension of OgPoset.gray() to maps of oriented graded posets.

This method can be called with the math operator *, that is, fst * snd is equivalent to gray(fst, snd).

This static method can also be used as a bound method, that is, fst.gray(*maps) is equivalent to
gray(fst, *maps).

Parameters
*maps (OgMap) – Any number of maps of oriented graded posets.

Returns
gray – The Gray product of the arguments.

Return type
OgMap

Notes

If all the arguments have type shapes.ShapeMap, so does their Gray product.

static join(*maps)
Functorial extension of OgPoset.join() to maps of oriented graded posets.

This method can be called with the shift operators >> and <<, that is, fst >> snd is equivalent to
join(fst, snd) and fst << snd is equivalent to join(snd, fst).

This static method can also be used as a bound method, that is, fst.join(*maps) is equivalent to
join(fst, *maps).

Parameters
*maps (OgMap) – Any number of maps of oriented graded posets.

Returns
join – The join of the arguments.

Return type
OgMap

5.8. ogposets 169



rewalt, Release 0.1.0

Notes

If all the arguments have type shapes.ShapeMap, so does their join.

static dual(ogmap, *dims)
Functorial extension of OgPoset.dual() to maps of oriented graded posets.

The dual in all dimensions can also be called with the negation operator ~, that is, ~ogmap is equivalent to
ogmap.dual().

This static method can be also used as a bound method, that is, self.dual(*dims) is equivalent to
dual(self, *dims).

Parameters

• ogmap (OgMap) – A map of oriented graded posets.

• *dims (int) – Any number of dimensions; if none, defaults to all dimensions.

Returns
dual – The map dualised in the given dimensions.

Return type
OgMap

Notes

If the map is a ShapeMap, so is its dual.

op()

Returns the dual in all odd dimensions.

co()

Returns the dual in all even dimensions.

hasse(**params)
Bound version of hasse.draw().

Calling f.hasse(**params) is equivalent to calling hasse.draw(f, **params).

5.8.3 ogposets.El

class rewalt.ogposets.El(dim, pos)
Bases: tuple

Class for elements of an oriented graded poset.

An element is encoded as a pair of non-negative integers: the dimension of the element, and its position in a
linear order of elements of the given dimension.

Parameters

• dim (int) – The dimension of the element.

• pos (int) – The position of the element.

170 Chapter 5. Contributing



rewalt, Release 0.1.0

Examples

>>> x = El(2, 3)
>>> x.dim
2
>>> x.pos
3

Methods

shifted(k) Returns the element of the same dimension, with po-
sition shifted by a given integer.

Attributes

dim Returns the dimension of the element.
pos Returns the position of the element.

property dim

Returns the dimension of the element.

Returns
dim – The dimension of the element.

Return type
int

property pos

Returns the position of the element.

Returns
pos – The position of the element

Return type
int

shifted(k)
Returns the element of the same dimension, with position shifted by a given integer.

Parameters
k (int) – The shift in position.

Returns
shifted – The shifted element.

Return type
El

5.8. ogposets 171



rewalt, Release 0.1.0

5.8.4 ogposets.GrSet

class rewalt.ogposets.GrSet(*elements)
Bases: object

Class for sets of elements of an oriented graded poset, graded by their dimension.

Objects of the class behave as sets; several methods of the set class are supported. However the data is stored in
a way that allows fast access to elements of a given dimension.

Parameters
elements (El) – Any number of elements.

Examples

We create an instance by listing elements; repetitions do not count.

>>> test = GrSet(El(0, 2), El(0, 2), El(0, 3), El(2, 0), El(3, 1))
>>> test
GrSet(El(0, 2), El(0, 3), El(2, 0), El(3, 1))
>>> len(test)
4

We can access the subsets of elements of given dimensions with indexer operators. These support slice syntax.

>>> test[0]
GrSet(El(0, 2), El(0, 3))
>>> test[0:3]
GrSet(El(0, 2), El(0, 3), El(2, 0))

The iterator for graded sets goes through the elements in increasing dimension and, for each dimension, in
increasing position.

>>> for x in test:
... print(x)
...
El(0, 2)
El(0, 3)
El(2, 0)
El(3, 1)

We can add and remove elements.

>>> test.remove(El(0, 3))
>>> test
GrSet(El(0, 2), El(2, 0), El(3, 1))
>>> test.add(El(1, 1))
>>> test
GrSet(El(0, 2), El(1, 1), El(2, 0), El(3, 1))

Set methods such as union, difference, and intersection are available with the same syntax.

172 Chapter 5. Contributing



rewalt, Release 0.1.0

Methods

add(element) Adds a single element.
copy() Returns a copy of the graded set.
difference(other) Returns the difference of the graded set with another

graded set.
intersection(*others) Returns the intersection of the graded set with other

graded sets.
isdisjoint(other) Returns whether the graded set is disjoint from an-

other.
issubset(other) Returns whether the graded set is a subset of another.
remove(element) Removes a single element.
union(*others) Returns the union of the graded set with other graded

sets.

Attributes

as_list Returns the list of elements in increasing dimension,
and, dimensionwise, in increasing position.

as_set Returns a Python set containing the same elements.
dim Returns the maximal dimension in which the graded

set is not empty, or -1 if it is empty.
grades Returns the list of dimensions in which the graded set

is not empty.

property grades

Returns the list of dimensions in which the graded set is not empty.

Returns
grades – The list of dimensions in which the graded set is not empty.

Return type
list[int]

property dim

Returns the maximal dimension in which the graded set is not empty, or -1 if it is empty.

Returns
dim – The maximal dimension in which the graded set is not empty.

Return type
int

property as_set

Returns a Python set containing the same elements.

Returns
as_set – A Python set containing the same elements.

Return type
set[El]

property as_list

Returns the list of elements in increasing dimension, and, dimensionwise, in increasing position.

5.8. ogposets 173



rewalt, Release 0.1.0

Returns
as_list – A list containing the same elements.

Return type
list[El]

add(element)
Adds a single element.

Parameters
element (El) – The element to add.

remove(element)
Removes a single element.

Parameters
element (El) – The element to remove.

union(*others)
Returns the union of the graded set with other graded sets.

Parameters
*others (GrSet) – Any number of graded sets.

Returns
union – The union of the graded set with all the given others.

Return type
GrSet

intersection(*others)
Returns the intersection of the graded set with other graded sets.

Parameters
*others (GrSet) – Any number of graded sets.

Returns
intersection – The intersection of the graded set with all the given others.

Return type
GrSet

difference(other)
Returns the difference of the graded set with another graded set.

Parameters
other (GrSet) – Another graded set.

Returns
difference – The difference between the two graded sets.

Return type
GrSet

issubset(other)
Returns whether the graded set is a subset of another.

Parameters
other (GrSet) – Another graded set.

Returns
issubset – True if and only self is a subset of other.

174 Chapter 5. Contributing



rewalt, Release 0.1.0

Return type
bool

isdisjoint(other)
Returns whether the graded set is disjoint from another.

Parameters
other (GrSet) – Another graded set.

Returns
isdisjoint – True if and only self and other are disjoint.

Return type
bool

copy()

Returns a copy of the graded set.

Returns
copy – A copy of the graded set.

Return type
GrSet

5.8.5 ogposets.GrSubset

class rewalt.ogposets.GrSubset(support, ambient, **params)
Bases: object

Class for graded subsets, that is, pairs of a GrSet and an “ambient” OgPoset, where the first is seen as a subset
of the second.

While objects of the class GrSet are mutable, once they are tied to an OgPoset they should be treated as im-
mutable.

Parameters

• support (GrSet) – The underlying graded set.

• ambient (OgPoset) – The ambient oriented graded poset.

Keyword Arguments
wfcheck (bool) – Check whether the support is a well-formed subset of the ambient, that is, it
has no elements out of range (default is True).

Notes

Two graded subsets are equal if and only if they have the same elements, and they are subsets of the same
OgPoset.

5.8. ogposets 175



rewalt, Release 0.1.0

Examples

We create an oriented graded poset and a pair of graded sets.

>>> point = OgPoset.point()
>>> triangle = point >> point >> point
>>> set1 = GrSet(El(1, 1), El(0, 1))
>>> set2 = GrSet(El(0, 3))

We can attach set1 to triangle as a subset.

>>> subset = GrSubset(set1, triangle)
>>> assert subset.support == set1

Trying to do the same with set2 returns a ValueError because El(0, 3) is out of range.

We can compute the downwards closure of set1 in triangle.

>>> subset.closure().support
GrSet(El(0, 0), El(0, 1), El(0, 2), El(1, 1))

All the set-theoretic operations apply to graded subsets as long as they have the same ambient OgPoset.

Methods

closure() Returns the downwards closure of the graded subset.
difference(other) Returns the difference with another graded subset of

the same oriented graded poset.
image(ogmap) Returns the image of the graded subset through a map

of oriented graded posets.
intersection(*others) Returns the intersection with other graded subsets of

the same oriented graded poset.
isdisjoint(other) Returns whether the object is disjoint from another

graded subset of the same oriented graded poset.
issubset(other) Returns whether the object is a subset of another sub-

set of the same oriented graded poset.
union(*others) Returns the union with other graded subsets of the

same oriented graded poset.

Attributes

ambient Returns the ambient oriented graded poset.
dim Shorthand for support.dim.
isclosed Returns whether the subset is (downwards) closed.
support Returns the underlying graded set (the "support" of

the subset).

property support

Returns the underlying graded set (the “support” of the subset).

Returns
support – The underlying graded set.

176 Chapter 5. Contributing



rewalt, Release 0.1.0

Return type
GrSet

property ambient

Returns the ambient oriented graded poset.

Returns
ambient – The ambient oriented graded poset.

Return type
OgPoset

property dim

Shorthand for support.dim.

property isclosed

Returns whether the subset is (downwards) closed.

Returns
isclosed – True if and only if the subset is downwards closed.

Return type
bool

union(*others)
Returns the union with other graded subsets of the same oriented graded poset.

Parameters
*others (GrSubset) – Any number of graded subsets of the same oriented graded poset.

Returns
union – The union of the graded subset with all the given others.

Return type
GrSubset

Notes

If all the arguments have type Closed , the union also has type Closed .

intersection(*others)
Returns the intersection with other graded subsets of the same oriented graded poset.

Parameters
*others (GrSubset) – Any number of graded subsets of the same oriented graded poset.

Returns
intersection – The intersection of the graded subset with all the given others.

Return type
GrSubset

5.8. ogposets 177



rewalt, Release 0.1.0

Notes

If all the arguments have type Closed , the intersection also has type Closed .

difference(other)
Returns the difference with another graded subset of the same oriented graded poset.

Parameters
other (GrSubset) – Another graded subset of the same oriented graded poset.

Returns
difference – The difference between the two graded subsets.

Return type
GrSubset

issubset(other)
Returns whether the object is a subset of another subset of the same oriented graded poset.

Parameters
other (GrSubset) – Another graded subset of the same oriented graded poset.

Returns
issubset – True if and only self is a subset of other.

Return type
bool

isdisjoint(other)
Returns whether the object is disjoint from another graded subset of the same oriented graded poset.

Parameters
other (GrSubset) – Another graded subset of the same oriented graded poset.

Returns
issubset – True if and only self and other are disjoint.

Return type
bool

closure()

Returns the downwards closure of the graded subset.

Returns
closure – The downwards closure of the subset.

Return type
Closed

image(ogmap)
Returns the image of the graded subset through a map of oriented graded posets.

Parameters
ogmap (OgMap) – A map from the ambient to another OgPoset.

Returns
image – The image of the subset through the given map.

Return type
GrSubset

178 Chapter 5. Contributing



rewalt, Release 0.1.0

Notes

If the object has type Closed , its image has also type Closed .

5.8.6 ogposets.Closed

class rewalt.ogposets.Closed(support, ambient, **params)
Bases: GrSubset

Subclass of GrSubset for (downwards) closed subsets.

Implements a number of methods that do not make sense for non-closed subsets, in particular those computing
input and output boundaries in each dimension.

Parameters

• support (GrSet) – The underlying graded set.

• ambient (OgPoset) – The ambient oriented graded poset.

Keyword Arguments
wfcheck (bool) – Check whether the support is a well-formed, closed subset of the ambient
(default is True).

Notes

There is an alternative constructor subset() which takes a GrSubset, and “upgrades” it to a Closed if it is
downwards closed.

Examples

After creating an oriented graded poset, we can obtain the closed subset of all its elements with OgPoset.all().

>>> point = OgPoset.point()
>>> triangle = point >> point >> point
>>> all = triangle.all()

We can compute its input and output boundary. . .

>>> all_in = all.input
>>> all_out = all.output

And since all happens to be a molecule, we can check the “globular” relations.

>>> assert all_in.input == all_out.input
>>> assert all_in.output == all_out.output

5.8. ogposets 179



rewalt, Release 0.1.0

Methods

boundary([sign, dim]) Returns the boundary of a given orientation and di-
mension.

boundary_max([sign, dim]) Returns the subset of maximal elements of the bound-
ary of a given orientation and dimension.

maximal() Returns the subset of maximal elements, that is, those
that are not covered by any other element in the closed
subset.

subset(grsubset, **params) Alternative constructor that promotes a GrSubset to
a Closed .

Attributes

as_map Returns an injective map representing the inclusion
of the closed subset in the ambient.

input Alias for boundary('-').
ispure Returns whether the maximal elements of the closed

subset all have the same dimension.
isround Returns whether the closed subset is round ("has

spherical boundary").
output Alias for boundary('+').

property as_map

Returns an injective map representing the inclusion of the closed subset in the ambient.

Returns
as_map – A map of oriented graded posets representing the inclusion of the closed subset.

Return type
OgMap

property ispure

Returns whether the maximal elements of the closed subset all have the same dimension.

Returns
ispure – True if and only if the subset is pure.

Return type
bool

property isround

Returns whether the closed subset is round (“has spherical boundary”).

This means that, for all k smaller than the dimension of the subset, the intersection of its input k-boundary
and of its output k-boundary is equal to its (k-1)- boundary.

Returns
isround – True if and only if the subset is round.

Return type
bool

180 Chapter 5. Contributing



rewalt, Release 0.1.0

maximal()

Returns the subset of maximal elements, that is, those that are not covered by any other element in the
closed subset.

Returns
maximal – The subset of maximal elements.

Return type
GrSubset

boundary_max(sign=None, dim=None)
Returns the subset of maximal elements of the boundary of a given orientation and dimension.

Parameters

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary_max – The maximal elements of the requested boundary.

Return type
GrSubset

boundary(sign=None, dim=None)
Returns the boundary of a given orientation and dimension.

Parameters

• sign (str, optional) – Orientation: '-' for input, '+' for output, None (default) for both.

• dim (int, optional) – Dimension of the boundary (default is self.dim - 1).

Returns
boundary – The requested boundary subset.

Return type
Closed

property input

Alias for boundary('-').

property output

Alias for boundary('+').

static subset(grsubset, **params)
Alternative constructor that promotes a GrSubset to a Closed .

Parameters
grsubset (GrSubset) – The subset to promote.

Keyword Arguments
wfcheck (bool) – Check whether the subset is downwards closed (default is True).

5.8. ogposets 181



rewalt, Release 0.1.0

5.8.7 ogposets.OgMapPair

class rewalt.ogposets.OgMapPair(fst, snd)
Bases: tuple

Class for pairs of maps of oriented graded posets.

This is used as the argument and/or return type of pushouts and coequalisers, which play a prominent role in the
theory.

Parameters

• fst (OgMap) – The first map in the pair.

• snd (OgMap) – The second map in the pair.

Methods

coequaliser(**params) Returns the coequaliser of a parallel pair of total
maps, if it exists.

pushout(**params) Returns the pushout of a span of total maps, if it ex-
ists.

then(other, *others) Returns the composite with other maps or pairs of
maps of oriented graded posets, when defined.

Attributes

fst Returns the first map in the pair.
iscospan Returns whether the pair is a cospan (has a common

target).
isinjective Returns whether both maps are injective.
isparallel Returns whether the pair is parallel (both a span and

a cospan).
isspan Returns whether the pair is a span (has a common

source).
issurjective Returns whether both maps are surjective.
istotal Returns whether both maps are total.
snd Returns the second map in the pair.
source Returns the pair of sources of the pair of maps, or, if

a span, their common source.
target Returns the pair of targets of the pair of maps, or, if a

cospan, their common target.

property fst

Returns the first map in the pair.

Returns
fst – The first map in the pair.

Return type
OgMap

182 Chapter 5. Contributing



rewalt, Release 0.1.0

property snd

Returns the second map in the pair.

Returns
snd – The second map in the pair.

Return type
OgMap

property source

Returns the pair of sources of the pair of maps, or, if a span, their common source.

Returns
source – The source or sources of the pair.

Return type
OgMap | tuple[OgMap]

property target

Returns the pair of targets of the pair of maps, or, if a cospan, their common target.

Returns
target – The target or targets of the pair.

Return type
OgMap | tuple[OgMap]

property isspan

Returns whether the pair is a span (has a common source).

Returns
isspan – True if and only if the pair is a span.

Return type
bool

property iscospan

Returns whether the pair is a cospan (has a common target).

Returns
iscospan – True if and only if the pair is a cospan.

Return type
bool

property isparallel

Returns whether the pair is parallel (both a span and a cospan).

Returns
isparallel – True if and only if the pair is parallel.

Return type
bool

property istotal

Returns whether both maps are total.

Returns
istotal – True if and only if both maps are total.

Return type
bool

5.8. ogposets 183



rewalt, Release 0.1.0

property isinjective

Returns whether both maps are injective.

Returns
isinjective – True if and only if both maps are injective.

Return type
bool

property issurjective

Returns whether both maps are surjective.

Returns
issurjective – True if and only if both maps are surjective.

Return type
bool

then(other, *others)
Returns the composite with other maps or pairs of maps of oriented graded posets, when defined.

If given two pairs, it composes the first map with the first map, and the second map with the second map.
If given a pair and a map, it composes both maps in the pair with the map.

Parameters

• other (OgMap | OgMapPair) – The first map or pair of maps to follow.

• others (OgMap | OgMapPair, optional) – Any number of other maps or pair of maps to
follow.

Returns
composite – The composite with all the other arguments.

Return type
OgMapPair

coequaliser(**params)
Returns the coequaliser of a parallel pair of total maps, if it exists.

Keyword Arguments
wfcheck (bool) – Check whether the coequaliser is well-defined.

Returns
coequaliser – The coequaliser of the pair of maps.

Return type
OgMap

Raises
ValueError – If the pair is not total and parallel.

pushout(**params)
Returns the pushout of a span of total maps, if it exists.

Pushouts do not always exist in the category of oriented graded posets and maps; however, pushouts of
injective (total) maps do always exist.

Keyword Arguments
wfcheck (bool) – Check whether the pushout is well-defined.

Returns
pushout – The pushout cospan of the pair of maps.

184 Chapter 5. Contributing



rewalt, Release 0.1.0

Return type
OgMapPair

Raises
ValueError – If the pair is not total and a span.

5.9 strdiags

Implements string diagram visualisations.

rewalt.strdiags.StrDiag(diagram) Class for string diagram visualisations of diagrams and
shapes.

rewalt.strdiags.draw(*diagrams, **params) Given any number of diagrams, generates their string di-
agrams and draws them.

rewalt.strdiags.draw_boundaries(diagram[,
dim])

Given a diagram, generates the string diagram of its in-
put and output boundaries of a given dimension, and
draws them.

rewalt.strdiags.to_gif (diagram, *diagrams, ...) Given a non-zero number of diagrams, generates their
string diagrams and outputs a GIF animation of the se-
quence of their visualisations.

5.9.1 strdiags.StrDiag

class rewalt.strdiags.StrDiag(diagram)
Bases: object

Class for string diagram visualisations of diagrams and shapes.

A string diagram depicts a top-dimensional “slice” of a diagram. The top-dimensional cells are represented as
nodes, and the codimension-1 cells are represented as wires. The inputs of a top-dimensional cell are incoming
wires of the associated node, and the outputs are outgoing wires.

The input->node->output order determines an acyclic flow between nodes and wires, which is represented in a
string diagram by placing them at different “heights”.

There are two other “flows” that we take into account:

• from codimension-2 inputs, to top-dimensional or codimension-1 cell, to codimension-2 outputs (only in
dimension > 1);

• from codimension-3 inputs, to codimension-1 cells, to codimension-3 outputs (only in dimension > 2).

These are not in general acyclic; however, we obtain an acyclic flow by removing all directed loops. If there is a
flow of the first kind between nodes and wires, we place them at different “widths”.

If there is a flow of the second kind between wires, we place them at different “depths”; this is only seen when
wires cross each other, in which case the one of lower depth is depicted as passing over the one of higher depth.

Internally, these data are encoded as a triple of NetworkX directed graphs, sharing the same vertices, partitioned
into “node vertices” and “wire vertices”. These graphs encode the “main (height) flow”, the “width flow” and
the “depth flow” between nodes and wires.

The class then contains a method place_vertices() that places the vertices on a [0, 1]x[0, 1] canvas, taking
into account the height and width relations and resolving clashes.

5.9. strdiags 185



rewalt, Release 0.1.0

Finally, it contains a method draw() that outputs a visualisation of the string diagram. The visualisation has
customisable colours, orientation, and labels, and works with any drawing.DrawBackend; currently available
are

• a Matplotlib backend, and

• a TikZ backend.

Parameters
diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or a
shape or a shape map.

Notes

The “main flow” graph is essentially the open graph encoding of the string diagram in the sense of Dixon &
Kissinger.

Methods

draw(**params) Outputs a visualisation of the string diagram, using a
backend.

place_vertices() Places node and wire vertices on the unit square can-
vas, and returns their coordinates.

Attributes

depthgraph Returns the "depth" flow graph between wire ver-
tices.

graph Returns the main flow graph between node and wire
vertices.

nodes Returns the nodes of the string diagram, together with
all the stored associated information.

widthgraph Returns the "width" flow graph between node and
wire vertices.

wires Returns the wires of the string diagram, together with
all the stored associated information.

property graph

Returns the main flow graph between node and wire vertices.

Returns
graph – The main flow graph.

Return type
networkx.DiGraph

property widthgraph

Returns the “width” flow graph between node and wire vertices.

Returns
widthgraph – The width flow graph.

186 Chapter 5. Contributing



rewalt, Release 0.1.0

Return type
networkx.DiGraph

property depthgraph

Returns the “depth” flow graph between wire vertices.

Returns
depthgraph – The depth flow graph.

Return type
networkx.DiGraph

property nodes

Returns the nodes of the string diagram, together with all the stored associated information.

This is a dictionary whose keys are the elements of the diagram’s shape corresponding to nodes. For each
node, the object stores another dictionary, which contains

• the node’s label (label),

• the node’s fill colour (color) and stroke colour (stroke),

• booleans specifying whether to draw the node and/or its label (draw_node, draw_label), and

• a boolean specifying whether the node represents a degenerate cell (isdegenerate).

Returns
nodes – The nodes of the string diagram.

Return type
dict[dict]

property wires

Returns the wires of the string diagram, together with all the stored associated information.

This is a dictionary whose keys are the elements of the diagram’s shape corresponding to wires. For each
node, the object stores another dictionary, which contains

• the wire’s label (label),

• the wire’s colour (color),

• a boolean specifying whether to draw the wire’s label (draw_label), and

• a boolean specifying whether the wire represents a degenerate cell (isdegenerate).

Returns
wires – The nodes of the string diagram.

Return type
dict[dict]

place_vertices()

Places node and wire vertices on the unit square canvas, and returns their coordinates.

The node and wire vertices are first placed on different heights and widths, proportional to the ratio between
the longest path to the vertex and the longest path from the vertex in the main flow graph and the width flow
graph.

In dimension > 2, this may result in clashes, where some vertices are given the same coordinates. In this
case, these are resolved by “splitting” the clashing vertices, placing them at equally spaced angles of a circle
centred on the clash coordinates, with an appropriately small radius that does not result in further clashes.

5.9. strdiags 187



rewalt, Release 0.1.0

The coordinates are returned as a dictionary whose keys are the elements corresponding to nodes and wires.

Returns
coordinates – The coordinates assigned to wire and node vertices.

Return type
dict[tuple[float]]

draw(**params)
Outputs a visualisation of the string diagram, using a backend.

Currently supported are a Matplotlib backend and a TikZ backend; in both cases it is possible to show the
output (as a pop-up window for Matplotlib, or as code for TikZ) or save to file.

Various customisation options are available, including different orientations and colours.

Keyword Arguments

• tikz (bool) – Whether to output TikZ code (default is False).

• show (bool) – Whether to show the output (default is True).

• path (str) – Path where to save the output (default is None).

• orientation (str) – Orientation of the string diagram: one of 'bt' (bottom-to-top),
'lr' (left-to-right), 'tb' (top-to-bottom), 'rl' (right-to-left) (default is 'bt').

• depth (bool) – Whether to take into account the depth flow graph when drawing wires
(default is True).

• bgcolor (multiple types) – The background colour (default is 'white').

• fgcolor (multiple types) – The foreground colour, given by default to nodes, wires,
and labels (default is 'black').

• infocolor (multiple types) – The colour of additional information displayed in the
diagram, such as positions (default is 'magenta').

• wirecolor (multiple types) – The default wire colour (default is same as fgcolor).

• nodecolor (multiple types) – The default node fill colour (default is same as fgcolor).

• nodestroke (multiple types) – The default node stroke colour (default is same as
nodecolor).

• degenalpha (float) – The alpha factor of wires corresponding to degenerate cells (default
is 0.1).

• labels (bool) – Whether to display node and wire labels (default is True).

• nodelabels (bool) – Whether to display node labels (default is same as labels).

• wirelabels (bool) – Whether to display wire labels (default is same as labels).

• labeloffset (tuple[float]) – Point offset of labels relative to vertices (default is (4,
4)).

• positions (bool) – Whether to display node and wire positions (default is False).

• nodepositions (bool) – Whether to display node positions (default is same as positions).

• wirepositions (bool) – Whether to display wire positions (default is same as positions).

• positionoffset (tuple[float]) – Point offset of positions relative to vertices (default
is (4, -16) for Matplotlib, (4, -6) for TikZ).

• scale (float) – (TikZ only) Scale factor to apply to output (default is 3).

188 Chapter 5. Contributing



rewalt, Release 0.1.0

• xscale (float) – (TikZ only) Scale factor to apply to x axis in output (default is same as
scale)

• yscale (float) – (TikZ only) Scale factor to apply to y axis in output (default is same as
scale)

5.9.2 strdiags.draw

class rewalt.strdiags.draw(*diagrams, **params)
Bases:

Given any number of diagrams, generates their string diagrams and draws them.

This is the same as generating the string diagram for each diagram, and calling StrDiag.draw() with the given
parameters on each one of them.

Parameters
*diagrams (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – Any number of
diagrams or shapes or shape maps.

Keyword Arguments
**params – Passed to StrDiag.draw().

5.9.3 strdiags.draw_boundaries

class rewalt.strdiags.draw_boundaries(diagram, dim=None, **params)
Bases:

Given a diagram, generates the string diagram of its input and output boundaries of a given dimension, and draws
them.

Parameters

• diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or
a shape or a shape map.

• dim (int, optional) – Dimension of the boundary (default is diagram.dim - 1).

Keyword Arguments
*params – Passed to StrDiag.draw().

5.9.4 strdiags.to_gif

class rewalt.strdiags.to_gif(diagram, *diagrams, **params)
Bases:

Given a non-zero number of diagrams, generates their string diagrams and outputs a GIF animation of the se-
quence of their visualisations.

Parameters

• diagram (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – A diagram or
a shape or a shape map.

• *diagrams (diagrams.Diagram | shapes.Shape | shapes.ShapeMap) – Any num-
ber of diagrams or shapes or shape maps.

Keyword Arguments

5.9. strdiags 189



rewalt, Release 0.1.0

• timestep (int) – The time step for the animation (default is 1000).

• loop (bool) – Whether to loop around the animation (default is False).

• **params – Passed to StrDiag.draw().

5.10 hasse

Implements oriented Hasse diagram visualisation.

rewalt.hasse.Hasse(ogp) Class for "oriented Hasse diagrams" of oriented graded
posets.

rewalt.hasse.draw(*ogps, **params) Given any number of oriented graded posets, or maps,
or diagrams, generates their Hasse diagrams and draws
them.

5.10.1 hasse.Hasse

class rewalt.hasse.Hasse(ogp)
Bases: object

Class for “oriented Hasse diagrams” of oriented graded posets.

The oriented Hasse diagram is stored as a NetworkX directed graph whose nodes are the elements of the oriented
graded poset.

The orientation information is encoded by having edges corresponding to input faces point from the face, and
edges corresponding to output faces point towards the face. To recover the underlying poset’s Hasse diagram, it
suffices to reverse the edges that point from an element of higher dimension.

Objects of the class can also store labels for nodes of the Hasse diagram, for example the images of the corre-
sponding elements through a map or a diagram.

The class also has a method draw() that outputs a visualisation of the Hasse diagram. This works with any
drawing.DrawBackend; currently available are

• a Matplotlib backend, and

• a TikZ backend.

Parameters
ogp (ogposets.OgPoset | ogposets.OgMap | diagrams.Diagram) – The oriented
graded poset, or a map of oriented graded posets, or a diagram.

Notes

If given a map of oriented graded posets (or shapes), produces the Hasse diagram of its source, with nodes
labelled with the images of elements through the map.

If given a diagram, produces the Hasse diagram of its shape, with nodes labelled with the images of elements
through the diagram.

190 Chapter 5. Contributing



rewalt, Release 0.1.0

Methods

draw(**params) Outputs a visualisation of the Hasse diagram, using a
backend.

place_nodes() Places the nodes of the Hasse diagram on the unit
square canvas, and returns their coordinates.

Attributes

diagram Returns the oriented Hasse diagram as a NetworkX
graph.

labels Returns the labels of nodes of the Hasse diagram, in
the same format as ogposets.OgMap.mapping().

nodes Returns the set of nodes of the Hasse diagram, that
is, the graded set of elements of the oriented graded
poset it encodes.

property nodes

Returns the set of nodes of the Hasse diagram, that is, the graded set of elements of the oriented graded
poset it encodes.

Returns
nodes – The set of nodes of the Hasse diagram.

Return type
ogposets.GrSet

property diagram

Returns the oriented Hasse diagram as a NetworkX graph.

Returns
diagram – The oriented Hasse diagram.

Return type
networkx.DiGraph

property labels

Returns the labels of nodes of the Hasse diagram, in the same format as ogposets.OgMap.mapping().

Returns
labels – The labels of the Hasse diagram.

Return type
list[list]

place_nodes()

Places the nodes of the Hasse diagram on the unit square canvas, and returns their coordinates.

The nodes are placed on different heights according to the dimension of the element their correspond to.
Elements of the same dimension are then placed at different widths in order of position.

The coordinates are returned as a dictionary whose keys are the elements corresponding to nodes of the
diagram.

Returns
coordinates – The coordinates assigned to nodes.

5.10. hasse 191



rewalt, Release 0.1.0

Return type
dict[tuple[float]]

draw(**params)
Outputs a visualisation of the Hasse diagram, using a backend.

Currently supported are a Matplotlib backend and a TikZ backend; in both cases it is possible to show the
output (as a pop-up window for Matplotlib, or as code for TikZ) or save to file.

Various customisation options are available, including different orientations and colours.

Keyword Arguments

• tikz (bool) – Whether to output TikZ code (default is False).

• show (bool) – Whether to show the output (default is True).

• path (str) – Path where to save the output (default is None).

• orientation (str) – Orientation of the Hasse diagram: one of 'bt' (bottom-to-top),
'lr' (left-to-right), 'tb' (top-to-bottom), 'rl' (right-to-left) (default is 'bt').

• bgcolor (multiple types) – The background colour (default is 'white').

• fgcolor (multiple types) – The foreground colour, given by default to nodes and labels
(default is 'black').

• labels (bool) – Whether to display node labels (default is True).

• inputcolor (multiple types) – The colour of edges corresponding to input faces (de-
fault is 'magenta').

• outputcolor (multiple types) – The colour of edges corresponding to output faces
(default is 'blue').

• xscale (float) – (TikZ only) Scale factor to apply to x axis in output (default is based on
the dimension and maximal number of elements in one dimension).

• yscale (float) – (TikZ only) Scale factor to apply to y axis in output (default is based on
the dimension and maximal number of elements in one dimension).

5.10.2 hasse.draw

class rewalt.hasse.draw(*ogps, **params)
Bases:

Given any number of oriented graded posets, or maps, or diagrams, generates their Hasse diagrams and draws
them.

This is the same as generating the Hasse diagram for each argument, and calling Hasse.draw() with the given
parameters on each one of them.

Parameters
*ogps (ogposets.OgPoset | ogposets.OgMap | diagrams.Diagram) – Any number of
oriented graded posets or maps or diagrams.

Keyword Arguments
**params – Passed to Hasse.draw().

192 Chapter 5. Contributing



rewalt, Release 0.1.0

5.11 drawing

Drawing backends.

rewalt.drawing.DrawBackend(**params) Abstract drawing backend for placing nodes, wires, ar-
rows, and labels on a canvas.

rewalt.drawing.MatBackend(**params) Drawing backend outputting Matplotlib figures.
rewalt.drawing.TikZBackend(**params) Drawing backend outputting TikZ code that can be em-

bedded in a LaTeX document.

5.11.1 drawing.DrawBackend

class rewalt.drawing.DrawBackend(**params)
Bases: ABC

Abstract drawing backend for placing nodes, wires, arrows, and labels on a canvas.

The purpose of this class is simply to describe the signature of methods that subclasses have to implement.

Keyword Arguments

• bgcolor (multiple types) – The background colour (default is 'white').

• fgcolor (multiple types) – The foreground colour (default is 'black').

• orientation (str) – Orientation: one of 'bt' (bottom-to-top), 'lr' (left-to-right), 'tb'
(top-to-bottom), 'rl' (right-to-left) (default is 'bt').

Notes

All coordinates should be passed to the backend as if the orientation was bottom-to-top; the backend will then
make rotations and adjustments according to the chosen orientation.

Methods

draw_arrow(xy0, xy1, **params) Draws an arrow on the canvas.
draw_label(label, xy, offset, **params) Draws a label next to a location on the canvas.
draw_node(xy, **params) Draws a node on the canvas.
draw_wire(wire_xy, node_xy, **params) Draws a wire from a wire vertex to a node vertex on

the canvas.
output(**params) Output the picture.
rotate(xy) Returns coordinates rotated according to the orienta-

tion of the picture.

draw_wire(wire_xy, node_xy, **params)
Draws a wire from a wire vertex to a node vertex on the canvas.

Parameters

• wire_xy (tuple[float]) – The coordinates of the wire vertex.

• node_xy (tuple[float]) – The coordinates of the node vertex.

Keyword Arguments

5.11. drawing 193



rewalt, Release 0.1.0

• color (multiple types) – The colour of the wire (default is self.fgcolor).

• alpha (float) – Alpha factor of the wire (default is 1).

• depth (bool) – Whether to draw the wire with a contour, to simulate “crossing over”
objects that are already on the canvas (default is True).

draw_label(label, xy, offset, **params)
Draws a label next to a location on the canvas.

Parameters

• label (str) – The label.

• xy (tuple[float]) – The coordinates of the object to be labelled.

• offset (tuple[float]) – Point offset of the label relative to the object.

Keyword Arguments
color (multiple types) – The colour of the label (default is self.fgcolor).

draw_node(xy, **params)
Draws a node on the canvas.

Parameters
xy (tuple[float]) – The coordinates of the node.

Keyword Arguments

• color (multiple types) – Fill colour of the node (default is self.fgcolor).

• stroke (multiple types) – Stroke colour of the node (default is same as color).

draw_arrow(xy0, xy1, **params)
Draws an arrow on the canvas.

Parameters

• xy0 (tuple[float]) – The coordinates of the starting point.

• xy1 (tuple[float]) – The coordinates of the ending point.

Keyword Arguments

• color (multiple types) – Colour of the arrow (default is self.fgcolor).

• shorten (float) – Factor by which to scale the length (default is 1).

output(**params)
Output the picture.

Keyword Arguments

• show (bool) – Whether to show the output (default is True).

• path (str) – Path where to save the output (default is None).

• scale (float) – (TikZ only) Scale factor to apply to output (default is 3).

• xscale (float) – (TikZ only) Scale factor to apply to x axis in output (default is same as
scale)

• yscale (float) – (TikZ only) Scale factor to apply to y axis in output (default is same as
scale)

194 Chapter 5. Contributing



rewalt, Release 0.1.0

rotate(xy)
Returns coordinates rotated according to the orientation of the picture.

Parameters
xy (tuple[float]) – The coordinates to rotate.

Returns
rotate – The rotated coordinates.

Return type
tuple[float]

5.11.2 drawing.MatBackend

class rewalt.drawing.MatBackend(**params)
Bases: DrawBackend

Drawing backend outputting Matplotlib figures.

Methods

draw_arrow(xy0, xy1, **params) Draws an arrow on the canvas.
draw_label(label, xy, offset, **params) Draws a label next to a location on the canvas.
draw_node(xy, **params) Draws a node on the canvas.
draw_wire(wire_xy, node_xy, **params) Draws a wire from a wire vertex to a node vertex on

the canvas.
output(**params) Output the picture.

draw_wire(wire_xy, node_xy, **params)
Draws a wire from a wire vertex to a node vertex on the canvas.

Parameters

• wire_xy (tuple[float]) – The coordinates of the wire vertex.

• node_xy (tuple[float]) – The coordinates of the node vertex.

Keyword Arguments

• color (multiple types) – The colour of the wire (default is self.fgcolor).

• alpha (float) – Alpha factor of the wire (default is 1).

• depth (bool) – Whether to draw the wire with a contour, to simulate “crossing over”
objects that are already on the canvas (default is True).

draw_label(label, xy, offset, **params)
Draws a label next to a location on the canvas.

Parameters

• label (str) – The label.

• xy (tuple[float]) – The coordinates of the object to be labelled.

• offset (tuple[float]) – Point offset of the label relative to the object.

Keyword Arguments
color (multiple types) – The colour of the label (default is self.fgcolor).

5.11. drawing 195



rewalt, Release 0.1.0

draw_node(xy, **params)
Draws a node on the canvas.

Parameters
xy (tuple[float]) – The coordinates of the node.

Keyword Arguments

• color (multiple types) – Fill colour of the node (default is self.fgcolor).

• stroke (multiple types) – Stroke colour of the node (default is same as color).

draw_arrow(xy0, xy1, **params)
Draws an arrow on the canvas.

Parameters

• xy0 (tuple[float]) – The coordinates of the starting point.

• xy1 (tuple[float]) – The coordinates of the ending point.

Keyword Arguments

• color (multiple types) – Colour of the arrow (default is self.fgcolor).

• shorten (float) – Factor by which to scale the length (default is 1).

output(**params)
Output the picture.

Keyword Arguments

• show (bool) – Whether to show the output (default is True).

• path (str) – Path where to save the output (default is None).

• scale (float) – (TikZ only) Scale factor to apply to output (default is 3).

• xscale (float) – (TikZ only) Scale factor to apply to x axis in output (default is same as
scale)

• yscale (float) – (TikZ only) Scale factor to apply to y axis in output (default is same as
scale)

5.11.3 drawing.TikZBackend

class rewalt.drawing.TikZBackend(**params)
Bases: DrawBackend

Drawing backend outputting TikZ code that can be embedded in a LaTeX document.

Methods

draw_arrow(xy0, xy1, **params) Draws an arrow on the canvas.
draw_label(label, xy, offset, **params) Draws a label next to a location on the canvas.
draw_node(xy, **params) Draws a node on the canvas.
draw_wire(wire_xy, node_xy, **params) Draws a wire from a wire vertex to a node vertex on

the canvas.
output(**params) Output the picture.

196 Chapter 5. Contributing



rewalt, Release 0.1.0

draw_wire(wire_xy, node_xy, **params)
Draws a wire from a wire vertex to a node vertex on the canvas.

Parameters

• wire_xy (tuple[float]) – The coordinates of the wire vertex.

• node_xy (tuple[float]) – The coordinates of the node vertex.

Keyword Arguments

• color (multiple types) – The colour of the wire (default is self.fgcolor).

• alpha (float) – Alpha factor of the wire (default is 1).

• depth (bool) – Whether to draw the wire with a contour, to simulate “crossing over”
objects that are already on the canvas (default is True).

draw_label(label, xy, offset, **params)
Draws a label next to a location on the canvas.

Parameters

• label (str) – The label.

• xy (tuple[float]) – The coordinates of the object to be labelled.

• offset (tuple[float]) – Point offset of the label relative to the object.

Keyword Arguments
color (multiple types) – The colour of the label (default is self.fgcolor).

draw_node(xy, **params)
Draws a node on the canvas.

Parameters
xy (tuple[float]) – The coordinates of the node.

Keyword Arguments

• color (multiple types) – Fill colour of the node (default is self.fgcolor).

• stroke (multiple types) – Stroke colour of the node (default is same as color).

draw_arrow(xy0, xy1, **params)
Draws an arrow on the canvas.

Parameters

• xy0 (tuple[float]) – The coordinates of the starting point.

• xy1 (tuple[float]) – The coordinates of the ending point.

Keyword Arguments

• color (multiple types) – Colour of the arrow (default is self.fgcolor).

• shorten (float) – Factor by which to scale the length (default is 1).

output(**params)
Output the picture.

Keyword Arguments

• show (bool) – Whether to show the output (default is True).

• path (str) – Path where to save the output (default is None).

5.11. drawing 197



rewalt, Release 0.1.0

• scale (float) – (TikZ only) Scale factor to apply to output (default is 3).

• xscale (float) – (TikZ only) Scale factor to apply to x axis in output (default is same as
scale)

• yscale (float) – (TikZ only) Scale factor to apply to y axis in output (default is same as
scale)

198 Chapter 5. Contributing



CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

199



rewalt, Release 0.1.0

200 Chapter 6. Indices and tables



PYTHON MODULE INDEX

r
rewalt, 110
rewalt.diagrams, 110
rewalt.drawing, 193
rewalt.hasse, 190
rewalt.ogposets, 155
rewalt.shapes, 130
rewalt.strdiags, 185

201



rewalt, Release 0.1.0

202 Python Module Index



INDEX

A
add() (rewalt.diagrams.DiagSet method), 113
add() (rewalt.ogposets.GrSet method), 174
add_cube() (rewalt.diagrams.DiagSet method), 114
add_simplex() (rewalt.diagrams.DiagSet method), 114
all() (rewalt.ogposets.OgPoset method), 160
all_layerings() (rewalt.shapes.Shape method), 148
ambient (rewalt.diagrams.Diagram property), 120
ambient (rewalt.ogposets.GrSubset property), 177
arrow() (rewalt.shapes.Shape static method), 145
as_chain (rewalt.ogposets.OgPoset property), 160
as_list (rewalt.ogposets.GrSet property), 173
as_map (rewalt.ogposets.Closed property), 180
as_set (rewalt.ogposets.GrSet property), 173
atom() (rewalt.shapes.Shape static method), 134
atom_inclusion() (rewalt.shapes.Shape method), 147

B
bot() (rewalt.ogposets.OgMap method), 169
bot() (rewalt.ogposets.OgPoset method), 164
boundary() (rewalt.diagrams.Diagram method), 124
boundary() (rewalt.ogposets.Closed method), 181
boundary() (rewalt.ogposets.OgMap method), 168
boundary() (rewalt.ogposets.OgPoset method), 162
boundary() (rewalt.shapes.Shape method), 147
boundary_max() (rewalt.ogposets.Closed method), 181
by_dim (rewalt.diagrams.DiagSet property), 112

C
Closed (class in rewalt.ogposets), 179
closure() (rewalt.ogposets.GrSubset method), 178
co() (rewalt.ogposets.OgMap method), 170
co() (rewalt.ogposets.OgPoset method), 164
coequaliser() (rewalt.ogposets.OgMapPair method),

184
coface_data (rewalt.ogposets.OgPoset property), 160
cofaces() (rewalt.ogposets.OgPoset method), 161
compose() (rewalt.diagrams.DiagSet method), 116
composite (rewalt.diagrams.Diagram property), 126
compositor (rewalt.diagrams.Diagram property), 126
compositors (rewalt.diagrams.DiagSet property), 112

coproduct() (rewalt.ogposets.OgPoset static method),
162

copy() (rewalt.diagrams.DiagSet method), 117
copy() (rewalt.ogposets.GrSet method), 175
Cube (class in rewalt.shapes), 154
cube() (rewalt.shapes.Shape static method), 145
cube_connection() (rewalt.diagrams.CubeDiagram

method), 129
cube_connection() (rewalt.shapes.Cube method), 155
cube_degeneracy() (rewalt.diagrams.CubeDiagram

method), 128
cube_degeneracy() (rewalt.shapes.Cube method), 155
cube_face() (rewalt.diagrams.CubeDiagram method),

128
cube_face() (rewalt.shapes.Cube method), 154
CubeDiagram (class in rewalt.diagrams), 128

D
degeneracy() (rewalt.diagrams.PointDiagram method),

129
depthgraph (rewalt.strdiags.StrDiag property), 187
Diagram (class in rewalt.diagrams), 118
diagram (rewalt.hasse.Hasse property), 191
DiagSet (class in rewalt.diagrams), 110
difference() (rewalt.ogposets.GrSet method), 174
difference() (rewalt.ogposets.GrSubset method), 178
dim (rewalt.diagrams.Diagram property), 121
dim (rewalt.diagrams.DiagSet property), 113
dim (rewalt.ogposets.El property), 171
dim (rewalt.ogposets.GrSet property), 173
dim (rewalt.ogposets.GrSubset property), 177
dim (rewalt.ogposets.OgPoset property), 160
disjoint_union() (rewalt.ogposets.OgPoset static

method), 163
draw (class in rewalt.hasse), 192
draw (class in rewalt.strdiags), 189
draw() (rewalt.diagrams.Diagram method), 126
draw() (rewalt.hasse.Hasse method), 192
draw() (rewalt.shapes.Shape method), 149
draw() (rewalt.shapes.ShapeMap method), 152
draw() (rewalt.strdiags.StrDiag method), 188

203



rewalt, Release 0.1.0

draw_arrow() (rewalt.drawing.DrawBackend method),
194

draw_arrow() (rewalt.drawing.MatBackend method),
196

draw_arrow() (rewalt.drawing.TikZBackend method),
197

draw_boundaries (class in rewalt.strdiags), 189
draw_boundaries() (rewalt.diagrams.Diagram

method), 126
draw_boundaries() (rewalt.shapes.Shape method),

149
draw_boundaries() (rewalt.shapes.ShapeMap

method), 152
draw_label() (rewalt.drawing.DrawBackend method),

194
draw_label() (rewalt.drawing.MatBackend method),

195
draw_label() (rewalt.drawing.TikZBackend method),

197
draw_node() (rewalt.drawing.DrawBackend method),

194
draw_node() (rewalt.drawing.MatBackend method),

196
draw_node() (rewalt.drawing.TikZBackend method),

197
draw_wire() (rewalt.drawing.DrawBackend method),

193
draw_wire() (rewalt.drawing.MatBackend method),

195
draw_wire() (rewalt.drawing.TikZBackend method),

196
DrawBackend (class in rewalt.drawing), 193
dual() (rewalt.ogposets.OgMap static method), 170
dual() (rewalt.ogposets.OgPoset static method), 164
dual() (rewalt.shapes.Shape static method), 143
dual() (rewalt.shapes.ShapeMap method), 151

E
El (class in rewalt.ogposets), 170
empty() (rewalt.ogposets.OgPoset static method), 162
empty() (rewalt.shapes.Shape static method), 145

F
face_data (rewalt.ogposets.OgPoset property), 160
faces() (rewalt.ogposets.OgPoset method), 161
from_face_data() (rewalt.ogposets.OgPoset class

method), 162
fst (rewalt.ogposets.OgMapPair property), 182

G
generate_layering() (rewalt.diagrams.Diagram

method), 126
generate_layering() (rewalt.shapes.Shape method),

148

generate_layering() (rewalt.shapes.ShapeMap
method), 152

generators (rewalt.diagrams.DiagSet property), 112
globe() (rewalt.shapes.Shape static method), 146
grades (rewalt.ogposets.GrSet property), 173
graph (rewalt.strdiags.StrDiag property), 186
gray() (rewalt.ogposets.OgMap static method), 169
gray() (rewalt.ogposets.OgPoset static method), 163
gray() (rewalt.shapes.Shape static method), 142
gray() (rewalt.shapes.ShapeMap static method), 151
GrSet (class in rewalt.ogposets), 172
GrSubset (class in rewalt.ogposets), 175

H
hascomposite (rewalt.diagrams.Diagram property), 122
Hasse (class in rewalt.hasse), 190
hasse() (rewalt.diagrams.Diagram method), 126
hasse() (rewalt.ogposets.OgMap method), 170
hasse() (rewalt.ogposets.OgPoset method), 164

I
id() (rewalt.ogposets.OgPoset method), 161
id() (rewalt.shapes.Shape method), 146
image() (rewalt.ogposets.GrSubset method), 178
image() (rewalt.ogposets.OgMap method), 168
image() (rewalt.ogposets.OgPoset method), 162
inflate() (rewalt.shapes.Shape method), 148
initial() (rewalt.shapes.Shape method), 147
input (rewalt.diagrams.Diagram property), 124
input (rewalt.ogposets.Closed property), 181
input (rewalt.ogposets.OgMap property), 168
input (rewalt.ogposets.OgPoset property), 162
intersection() (rewalt.ogposets.GrSet method), 174
intersection() (rewalt.ogposets.GrSubset method),

177
inv() (rewalt.ogposets.OgMap method), 168
inverse (rewalt.diagrams.Diagram property), 125
invert() (rewalt.diagrams.DiagSet method), 114
isatom (rewalt.shapes.Shape property), 133
iscell (rewalt.diagrams.Diagram property), 121
isclosed (rewalt.ogposets.GrSubset property), 177
iscospan (rewalt.ogposets.OgMapPair property), 183
iscubical (rewalt.diagrams.DiagSet property), 113
isdefined() (rewalt.ogposets.OgMap method), 167
isdegenerate (rewalt.diagrams.Diagram property), 121
isdisjoint() (rewalt.ogposets.GrSet method), 175
isdisjoint() (rewalt.ogposets.GrSubset method), 178
isinjective (rewalt.ogposets.OgMap property), 167
isinjective (rewalt.ogposets.OgMapPair property),

183
isinvertiblecell (rewalt.diagrams.Diagram prop-

erty), 121
isiso (rewalt.ogposets.OgMap property), 167
isparallel (rewalt.ogposets.OgMapPair property), 183

204 Index



rewalt, Release 0.1.0

ispure (rewalt.ogposets.Closed property), 180
isround (rewalt.diagrams.Diagram property), 121
isround (rewalt.ogposets.Closed property), 180
isround (rewalt.shapes.Shape property), 133
issimplicial (rewalt.diagrams.DiagSet property), 113
isspan (rewalt.ogposets.OgMapPair property), 183
issubset() (rewalt.ogposets.GrSet method), 174
issubset() (rewalt.ogposets.GrSubset method), 178
issurjective (rewalt.ogposets.OgMap property), 167
issurjective (rewalt.ogposets.OgMapPair property),

184
istotal (rewalt.ogposets.OgMap property), 167
istotal (rewalt.ogposets.OgMapPair property), 183

J
join() (rewalt.ogposets.OgMap static method), 169
join() (rewalt.ogposets.OgPoset static method), 164
join() (rewalt.shapes.Shape static method), 142
join() (rewalt.shapes.ShapeMap static method), 151

L
labels (rewalt.hasse.Hasse property), 191
layers (rewalt.diagrams.Diagram property), 121
layers (rewalt.shapes.Shape property), 133
layers (rewalt.shapes.ShapeMap property), 150
linvertor (rewalt.diagrams.Diagram property), 125
lunitor() (rewalt.diagrams.Diagram method), 124

M
make_composite() (rewalt.diagrams.DiagSet method),

116
make_inverses() (rewalt.diagrams.DiagSet method),

115
mapping (rewalt.diagrams.Diagram property), 120
mapping (rewalt.ogposets.OgMap property), 167
MatBackend (class in rewalt.drawing), 195
maximal() (rewalt.ogposets.Closed method), 180
maximal() (rewalt.ogposets.OgPoset method), 161
merge() (rewalt.shapes.Shape method), 143
module

rewalt, 110
rewalt.diagrams, 110
rewalt.drawing, 193
rewalt.hasse, 190
rewalt.ogposets, 155
rewalt.shapes, 130
rewalt.strdiags, 185

N
name (rewalt.diagrams.Diagram property), 120
nodes (rewalt.hasse.Hasse property), 191
nodes (rewalt.strdiags.StrDiag property), 187
none() (rewalt.ogposets.OgPoset method), 160

O
OgMap (class in rewalt.ogposets), 165
OgMapPair (class in rewalt.ogposets), 182
OgPoset (class in rewalt.ogposets), 156
op() (rewalt.ogposets.OgMap method), 170
op() (rewalt.ogposets.OgPoset method), 164
output (rewalt.diagrams.Diagram property), 124
output (rewalt.ogposets.Closed property), 181
output (rewalt.ogposets.OgMap property), 168
output (rewalt.ogposets.OgPoset property), 162
output() (rewalt.drawing.DrawBackend method), 194
output() (rewalt.drawing.MatBackend method), 196
output() (rewalt.drawing.TikZBackend method), 197

P
paste() (rewalt.diagrams.Diagram method), 122
paste() (rewalt.shapes.Shape static method), 135
paste_along() (rewalt.shapes.Shape static method),

137
place_nodes() (rewalt.hasse.Hasse method), 191
place_vertices() (rewalt.strdiags.StrDiag method),

187
point() (rewalt.ogposets.OgPoset static method), 162
point() (rewalt.shapes.Shape static method), 145
PointDiagram (class in rewalt.diagrams), 129
pos (rewalt.ogposets.El property), 171
pullback() (rewalt.diagrams.Diagram method), 123
pushout() (rewalt.ogposets.OgMapPair method), 184

R
remove() (rewalt.diagrams.DiagSet method), 117
remove() (rewalt.ogposets.GrSet method), 174
rename() (rewalt.diagrams.Diagram method), 122
rewalt
module, 110

rewalt.diagrams
module, 110

rewalt.drawing
module, 193

rewalt.hasse
module, 190

rewalt.ogposets
module, 155

rewalt.shapes
module, 130

rewalt.strdiags
module, 185

rewrite() (rewalt.diagrams.Diagram method), 123
rewrite_steps (rewalt.diagrams.Diagram property),

121
rewrite_steps (rewalt.shapes.Shape property), 133
rewrite_steps (rewalt.shapes.ShapeMap property),

150

Index 205



rewalt, Release 0.1.0

rinvertor (rewalt.diagrams.Diagram property), 125
rotate() (rewalt.drawing.DrawBackend method), 194
runitor() (rewalt.diagrams.Diagram method), 125

S
Shape (class in rewalt.shapes), 130
shape (rewalt.diagrams.Diagram property), 120
ShapeMap (class in rewalt.shapes), 149
shifted() (rewalt.ogposets.El method), 171
Simplex (class in rewalt.shapes), 152
simplex() (rewalt.shapes.Shape static method), 145
simplex_degeneracy() (re-

walt.diagrams.SimplexDiagram method),
127

simplex_degeneracy() (rewalt.shapes.Simplex
method), 153

simplex_face() (rewalt.diagrams.SimplexDiagram
method), 127

simplex_face() (rewalt.shapes.Simplex method), 153
SimplexDiagram (class in rewalt.diagrams), 127
size (rewalt.ogposets.OgPoset property), 160
snd (rewalt.ogposets.OgMapPair property), 182
source (rewalt.ogposets.OgMap property), 166
source (rewalt.ogposets.OgMapPair property), 183
StrDiag (class in rewalt.strdiags), 185
subset() (rewalt.ogposets.Closed static method), 181
support (rewalt.ogposets.GrSubset property), 176
suspend() (rewalt.ogposets.OgPoset static method), 163
suspend() (rewalt.shapes.Shape static method), 141

T
target (rewalt.ogposets.OgMap property), 166
target (rewalt.ogposets.OgMapPair property), 183
terminal() (rewalt.shapes.Shape method), 148
then() (rewalt.ogposets.OgMap method), 167
then() (rewalt.ogposets.OgMapPair method), 184
then() (rewalt.shapes.ShapeMap method), 150
theta() (rewalt.shapes.Shape static method), 146
TikZBackend (class in rewalt.drawing), 196
to_gif (class in rewalt.strdiags), 189
to_inputs() (rewalt.diagrams.Diagram method), 123
to_inputs() (rewalt.shapes.Shape method), 139
to_outputs() (rewalt.diagrams.Diagram method), 122
to_outputs() (rewalt.shapes.Shape method), 137

U
underset() (rewalt.ogposets.OgPoset method), 161
union() (rewalt.ogposets.GrSet method), 174
union() (rewalt.ogposets.GrSubset method), 177
unit() (rewalt.diagrams.Diagram method), 124
update() (rewalt.diagrams.DiagSet method), 117

W
widthgraph (rewalt.strdiags.StrDiag property), 186

wires (rewalt.strdiags.StrDiag property), 187
with_layers() (rewalt.diagrams.Diagram static

method), 127

Y
yoneda() (rewalt.diagrams.Diagram static method), 126
yoneda() (rewalt.diagrams.DiagSet static method), 117

206 Index


	Installation
	Getting started
	Further reading
	License
	Contributing
	The theory of monoids
	Adding the sorts and operations
	Adding “oriented equations”
	Making the equations go both ways
	Computing with diagrammatic rewrites

	Generating string diagrams
	A presentation of adjunctions
	Customising string diagrams
	Fun with higher-dimensional shapes

	Exploring simplices and cubes
	Oriented simplices
	Maps of simplices
	Constructing a simplicial set
	Oriented cubes
	Maps of cubes
	Constructing a cubical set
	Mixing them together

	The Eckmann–Hilton argument
	First braiding
	Second braiding

	Presenting a category
	Adding all objects and morphisms
	Adding compositors
	Composites involving units

	diagrams
	diagrams.DiagSet
	diagrams.Diagram
	diagrams.SimplexDiagram
	diagrams.CubeDiagram
	diagrams.PointDiagram

	shapes
	shapes.Shape
	shapes.ShapeMap
	shapes.Simplex
	shapes.Cube

	ogposets
	ogposets.OgPoset
	ogposets.OgMap
	ogposets.El
	ogposets.GrSet
	ogposets.GrSubset
	ogposets.Closed
	ogposets.OgMapPair

	strdiags
	strdiags.StrDiag
	strdiags.draw
	strdiags.draw_boundaries
	strdiags.to_gif

	hasse
	hasse.Hasse
	hasse.draw

	drawing
	drawing.DrawBackend
	drawing.MatBackend
	drawing.TikZBackend


	Indices and tables
	Python Module Index
	Index

